

Traffic Monitoring for 3G Network Diagnostic: a Doctor's View

Dr. Fabio Ricciato

1

Talk at IWSSIP 2012, Vienna, 13. April 2012

This talk

Goal

share lessons learned about the role of traffic measurements data \longrightarrow signals for the diagnosis of network problems in a 3G mobile network \longrightarrow system

Outline

- Background
- Introduction to 3G cellular networks
- Traffic monitoring and Network Signals for Diagnostics
- Example: detection of congestion bottleneck

Research on 3G traffic monitoring @FTW

- Research on 3G Traffic Monitoring @FTW began in 2004
- METAWIN project
 - <u>Measurement and Traffic Analysis in Wireless Network</u>
 - partners: network operator, system integrator, university

Goals

m

- Sniff packets in the 3G core Network (GPRS and UMTS)
- Analyze traffic traces to support network planning
- Understand "what's going on"

Research on 3G traffic monitoring @FTW

- Results from 1st project
 - Prototype of advanced monitoring system
 - Developed from scratch on Linux
 - <u>Deployed</u> in the live network of A1 for dual use (production + research)
 - Access to real retwork and monitoring data for research
- Follow-up projects
 - research: analysis of traffic data
 - commercial: development/extension of monitoring system

Introduction to 3G mobile networks

Circuits and Packets

- Two main design approaches for Communication Networks
- Circuit-switched (CS)
 - nodes build a long pipe (\rightarrow "circuit") from source to destination
 - data (e.g. voice samples) travel into the pipe

- Packet-switched (PS)
 - data travel in independent chunks \rightarrow "packets"
 - packets received, processed and forwarded independently by intermediate nodes

TDMA Time-Division Multiple Access

TDMA Time-Division Multiple Access W-CDMA Wideband Code-Divisioon Multiple Access 9

... 3G (UMTS) ...

....3.5G (HSPA)....

It keeps changing ...

- Cellular Network is continuously evolving system...
 - architecture evolves: GSM, GPRS, EDGE, UMTS, HSPA, LTE/SAE
 - upgrade/replacement of network equipments
 - new SW releases, new network features
 - capacity upgrades: more radio bandwidth, higher link speed
- ... embedded in a continuosly evolving usaeg environment
 - more 3G **users**, increasing bandwidth demads, changing traffic patterns
 - more terminals, of new classes (laptop, smartphone, tablets... Internet of Things...) and capabilities
 - evolution of **applications**, apps, services
 - new habits: mobile tethering, wifi offloading

Analogy with human body

- The real infrastructure is much more complex than any of its schematic representation
 - Physical and logical components, dependencies, functional layers
 ... like a human body!

... keeps watching it

- 3G networks are <u>complex</u> and <u>evolving</u> systems
- \rightarrow new risks, problems, anomalies arise continuously ...
- Endogenous: congestions, misconfiguration, failures, malfunctioning
- **Exogenous:** attacks, large-scale infections
- To operate correctly the network infrastructure, its health status must be monitored continuously, to reveal problems/ anomalies as early as possible
- → diagnosis & troubleshooting are continuous processes (not one-shot tasks)
- How network monitoring can help the <u>process</u> of diagnosis and troubleshooting ? What are the difficulties & challenges?

Like a Doctor

- How ?
 - Observe many "signals" from the infrastructure, obtained with non-invasive methods
 - Reveal "symptoms" of abnormal conditions and interpret possible causes → "diagnosis"
- Challenges
 - define the "right" signals (cost vs. benefit)
 - detect "abnormal conditions" (symptoms)
 - interpret the root cause (diagnosis)
- Like in Medicine ...
 - coping with "soft" definitions
 - some irreducible level of subjectivity

Introduction to Network Monitoring

Network Monitoring

- How the operator can monitor its network
- 1. Ask the boxes
 - Collects logs and alarms from network equipment themselves
 - Limited amount of data, coarse accuracy, sometimes unreliable

Network Monitoring

- How the operator can monitor a network
- 1. Ask the boxes
 - Collects logs and alarms from network equipment themselves
 - Limited amount of data, coarse accuracy, sometimes unreliable
- 2. Active measurements
 - Send end-to-end probe traffic through the network
 e.g. test downloads, pings

Network Monitoring

- How the operator can monitor a network
- 1. Ask the boxes
 - Collects logs and alarms from network equipment themselves
 - Limited amount of data, coarse accuracy, sometimes unreliable
- 2. Active measurements
 - Send end-to-end probe traffic through the network
 e.g. test downloads, pings

3. Passive monitoring

- "sniff" packets on the wire
- Non invasive, but requires monitoring HW installation

• Hybrid Measurements

 send probe traffic and capture it passively inside the network

Passive monitoring

- Sniffing
 - pick a copy of the packet as it traverses the wire
 - Store it with additional information to each record
 - e.g. timestamps, capture interface, terminal type

Network signals

- Examples of "network signals" related to performance metrics
 - one-point measurements on data plane
 - TCP Round-Trip-Time (RTT), Retransmissions, Timeouts
 - Throughput statistics (peak, mean,...), Download times
 - higher-layer Request/Response delay (DNS, HTTP, ...)
 - two-point measurements on data plane
 - One-way delay
 - Packet loss

control-plane signals

- Frequency of error messages, latency of signaling procedures
- Signals can be partitioned across several dimensions
 - Network section
 - e.g. traffic to server Y, to peering link X, to node Z ...
 - User class, Terminal type
 - Application, Service ... etc.

Considerations

- Basic principle: network problems will impact one or several "signals", causing abnormal patterns
 - congestion \rightarrow higher loss and/or delay, lower flow throughput
 - observe the signal to infer back the problem

a matter of definitions

- Q. How many sheeps in this field ?
- counting is easy ...
- once you define clearly what to count
 - how is the "field" delimited ?
 - and what do you mean exactly by "sheep"?
 - are *lambs* counted as sheep, or only adults ?
 - do *pregnant sheeps* count for 1 or 2 ?
 - what about those *dead sheeps* over there ?
 - shouldn't we count *goats* too ?

- ...

Examples of Passive Monitoring for Network Diagnostic

Longum est iter per praecepta, breve et efficax per exempla

32

Detecting congestion bottleneck

- Congestion bottleneck
 - Definition: too much traffic for too little capacity at some point
 - Effects on packets
 - Packets queued in buffers: longer transit delay
 - Packet drops: retransmissions
 - End-terminals react reducing the sending rate

- Impact on users
 - Looooong waiting for downloads
 - Interactive applications don't work: voip, skype, game ...

Detecting congestion bottleneck

- Causes for congestion bottleneck
 - Traffic grew faster than provisioning cycle
 - gap between nominal vs. actual capacity (e.g. due to misconfigurations, misfunctioning, ...)
- Problem: not every link/node can be monitored
- Goal: detect congestion on link/node X from the analysis of traffic at a different point M
 - without a priori information about actual link capacity
 - without topology information

Look at TCP

- Idea: look at TCP
 - TCP is closed-loop → protocol dynamics have end-to-end interactions → local problem on link X should be visible at any other path section
 - >90% of traffic is TCP
- Possible approaches: analysis of ...
 - Distribution of Traffic Rate
 - Frequency of Retransmission Timeouts (RTOs)
 - Round-Trip Times (RTT)
 - Per-flow Throughput

F. Ricciato, F. Vacirca, P. Svoboda, Diagnosis of Capacity Bottlenecks via Passive Monitoring in 3G Networks: an Empirical Analysis, Computer Networks, vol. 51, n.4, pp. 1205-1231, March 2007

Detecting congestion bottleneck

Aggregate Rate Analysis - Background

- Background
 - The simplest traffic model for infinite capacity: superposition of *independent* On/Off flows
 - Poisson arrivals of rate λ , holding time of mean 9
 - fixed rate r=1 (M/G/ ∞ queue)
 - Aggregate rate (marginal) is Poisson distributed
 - Variance = Mean
 - Skewness = $Mean^{-1/2}$
- Bottleneck-free conditions
 - Variance of marginal rate increases with mean load
 - Variance is higher at peak-hour
 - Skewness is lower at peak-hour

VAR(R) = E(R) = A

 $SKEW(R) = 1/\sqrt{A}$

Aggregate Rate Analysis – the idea

- Conjecture on bottleneck-constrained traffic
 - Instantaneous rate R can not exceed path capacity C
 - Bottleneck induces correlation between flow rates as $R \rightarrow C^{-}$
 - via congestion control loop
 - reflecting barrier at R=C
 - Variance reduction and left-skewness as $R \rightarrow C^{-}$

Idea: use trajectories of VAR-MEAN and SKEW-MEAN to infer the presence of a bottleneck (and value of C) *without a priori information on C !*

Time-scales

- Importance of time-scales
 - aggregate rate R(t) is measured in time-bins of length ${f T}$
 - moments (MEAN, VAR, SKEW) are estimated in window of length ${\bf W}$
 - time-scales constraints
 - T >= a few RTTs (to close the CC loop)
 - W >> T (to have enough samples)
 but small enough to ensure stationarity (time-of-day fluctuations)
 - our setting: T=10 sec, W=1 hour.

Data reduction

- Data reduction
 - Our goal is only to discriminate increase/decrease trends
 - apply quadratic regression on V/M, S/M data
 - benefits: reduces noise, impact of outliers \rightarrow robustness
 - don't use more data than you actually need!
 - fitted polynomial parameters give synthetic indicators that can be thresholded to trigger alarm

Validation by simulation

- Simulation set-up (ns-2)
 - simple closed-loop user model
 - allows testing different congestion levels, bottleneck types (buffering vs. discarding excess packets) than real bottleneck

Retransmission TimeOuts

- Bottleneck → Congestion <u>at peak hour</u> → more packet loss
 → more retransmissions due to timeout expirations
- Idea: infer congestion from Frequency of Retransmission Timeouts (RTO)s in some timebin T

 $F_{RTO}(T) = \frac{\# \text{ of } RTO \text{ events in } T}{\# \text{ of } DATA \text{ packets in } T}$

- Expectation: bottleneck causes large increase of F_{RTO} in peak-hour compared to off-peak periods
- Tool to infer TCP RTOs from DATA-ACK (mis)matching
 - classifies different types of RTOs (spurious, ...)
 - measure frequency of RTOs in timebins of 1 min

Fig. 2. SA total rate for the monitored period (10 s bins, rescaled values).

Raw RTO measurements

• On the right way, but "noise" would cause false alarms ...

Fig. 2. SA total rate for the monitored period (10 s bins, rescaled values).

Filtered RTO measurements

- Noise due to heavy-hitters "bad elephants" (BE)
 - few clients, with high traffic volume (elephant) and poor network conditions ("bad") due to local causes
 - biasing the ratio

of RTO events # of DATA packets

in some timebins

- Workaround
 - identify BE by some heuristic (e.g. the top-10 with most RTOs) and filter them away

Stepping into a more general problem...

- traffic distributions are heavy-tailed
 - \rightarrow there are always some "elephants" around
- poor performance sometimes due to local conditions
 - e.g. congestion of dedicated resources, terminal errors ...
 - \rightarrow some elephants will be " bad"
- many common KPI are just global percentages!

 $KPI = \frac{\# \text{ of failed attempts}}{\# \text{ of attempts}}$

 Can we provide a theoretically-founded solution (in place of heuristics) ?

A. Coluccia, F. Ricciato, P. Romirer, On Robust Estimation of Network-wide Packet Loss in 3G Cellular Networks, Proc. of 5th IEEE Broadband Wireless Access Workshop (BWA'09).

System Modeling

- Notation
 - in a generic timebin *t* user *i* (*i*=1...*I*)
 - generates *n_i* "requests" (e.g. packets)
 - out of which m_i "fail" (e.g. lost)
- Assumptions
 - failures are <u>independent</u> and occur with (unknown) probability a_i
 - a_i 's are iid random variables with mean $\bar{a} \stackrel{\text{def}}{=} \mathrm{E}[a_i]$
 - independency between traffic volume n_i and failure prob. a_i

Estimators

- Goal: estimate $\bar{a} \stackrel{\text{def}}{=} E[a_i]$ given $\{n_i, m_i\}$
- The Ideal Estimator
 - is unbiased

- has minimum variance
- is <u>simple</u>: fast to compute, easy to implement, easy to understand by practitioners!
- is <u>general</u>: not bound to a specific (class of) traffic distribution (n_i) 's)

Basic Estimators

- Empirical Global Ratio
 - Global Percentage

$$EGR = \frac{\# \text{ of total failures}}{\# \text{ of total requests}} = \frac{\sum_{i} m_{i}}{\sum_{i} n_{i}}$$

Empirical Mean Ratio

- Arithmetic mean of individual ratios $r_i = \frac{m_i}{m_i}$

$$EMR = \frac{1}{I} \sum_{i} r_i = \frac{1}{I} \sum_{i} \frac{m_i}{n_i}$$

NB: EMR is more costly to implement than EGR, requires per-user counters → need to extract event-to-user associations

 n_i

EWR - definition

- Both EGR and EMR can be "corrected" by filtering away very big (for EGR) or very small (for EMR) samples
 - discarding lots of data, especially for long-tailed n_i 's
- Can we do something more clever than *discarding* data?
 - weighting data !
- Empirical Weighted Ratio (EWR)

$$EWR = \sum_{i} w_{i} \frac{m_{i}}{n_{i}} = \sum_{i} w_{i} r_{i} = \underline{w}^{T} \underline{r}$$

with
$$w_i > 0$$
, $\sum_i w_i = 1$

- EGR,EMR are special cases of EWR
 - w_i constant $\rightarrow w_i = 1/I \rightarrow EWR = EMR$
 - w_i proportional to $n_i \rightarrow w_i = n_i / N \rightarrow EWR = EGR$

EWR - optimization

 Problem: Find the optimal weights w_i's that minimize the variance of the estimator VAR(S(w))

$$S(\mathbf{w}) = \mathbf{w}^T \mathbf{r}$$
 with $|\mathbf{w}| = 1, \mathbf{w} \ge \mathbf{0}$

- Resolution
 - compute variance of estimator as function of weights VAR(S(w))=f(w)
 - constrained minimization, solve by Lagrangian multipliers
- Exact optimal solution

$$\dot{w}_i = \frac{\dot{n}_i}{\sum_{j=1}^I \dot{n}_j} \quad \text{with} \quad \dot{n}_i \stackrel{\text{def}}{=} \frac{1}{\sigma_a^2 + \frac{(\bar{a} - \sigma_a^2 - \bar{a}^2)}{n_i}}$$

$$\dot{\mathbf{w}} = \underset{\substack{\mathbf{w} > 0\\\sum_{i} w_{i} = 1}}{\operatorname{arg\,min\,VAR}[S(\mathbf{w})]}$$

[BWA'09] A. Coluccia, F. Ricciato, Peter Romirer, On Robust Estimation of Network-wide Packet Loss in 3G Cellular Networks, IEEE BWA 2009, Honolulu, 30 November 2009

- setting the knee-point θ
 - optimal value depends on first two moments of p(a): \rightarrow unknown \otimes
 - final estimator performance are weakly sensitive to exact location of kneepoint, as far as "extreme" settings (very low, very high) are avoided
 - simplest solution: set to fixed value, e.g. θ =20.

Bayesian Estimators

- Empirical Piece-wise Linearly Weighted Ratio (EPWR)
 - single parameter θ (set heuristically to θ =20)
 - very simple conceptually and computationally
 - requires individual per-user counters, as EMR
- Alternative approach: Bayesian estimators
 - Bayesian hierarchical model: $p(\mathbf{a}) \rightarrow \{a_i\} \rightarrow \{m_i\}$
 - Approach: empirical parametric Bayes + conjugate prior (*)
 - elegant maths, closed formula, but in practice same performance as EPWR

 $S(\mathbf{w}) \stackrel{\text{def}}{=} \sum_{i=1}^{I} w_i r_i = \mathbf{w}^T \mathbf{r}$

Results DATA:INV

Fig. 2. Estimated mean failure probability for DATA: INV dataset (missing or ambiguous SYNACK/ACK associations).

54 - 54 -

Results DATA:RTT

Fig. 3. Estimated mean failure probability for DATA:RTT dataset (unambiguous SYNACK/ACK pairs with semi-RTT exceeding 500 ms).

55 ^{- 55 -}

Results from a real dataset

- Datasets from on a real UMTS/HSPA network
- DATA:INV
 - REQUEST := every SYNACK in DL SUCCESS := unambiguous ACK in UL
- DATA:RTT
 - REQUEST := unambiguous SYNACK/ACK pair
 - SUCCESS := RTT < 500 ms

Detecting congestion bottleneck

- Detecting *upstream* congestion from server-side RTT
 - SYN-SYNACK associations

- The proposed approaches (rate/RTO/RTT) helped to detect instances of serious congestion in the real network
- Next goal: detecting pre-congestion events
 - 3G network capacity is becoming the bottleneck
- Approach: analyse per-flow throughput
 - extract relevant "signal" from per-flow throughput measurements
 - ongoing work

Working with online data

- Doctors need to practice on real patients ...
- It's important to analyse recent data \rightarrow online analysis
 - external information needed for drill-down is still available
 - you can still talk to the patient
 - timely identification of real anomalies has immediate impact
 - makes research more interesting, but also more costly
 - need cooperation with the patient

Wrap-up on Lessons Learned

- Research on 3G Traffic Monitoring ...
- is interesting
 - as any research on real systems
- is useful
 - 3G network systems are too complex/large to be error-free
- is costly
 - data collection eats lot of engineer works
 - analysis and explorations of real data is often lengthy
 - every analysis task requires own methodology
 - need domain-specific knowledge about 3G networks, protocols
- Iot of space for problem-driven & curiosity-driven research

Wrap-up on Lessons Learned

- Automatic anomaly-detection like a medical tool
- Yes, it empowers the doctor
- No, it cannot replace the doctor

- About network problems
 - Recurring problems: can be detected and diagnosed automatically (but also prevented...)
 - Novel problems: symptoms can be detected automatically, but need doctor for interpretation and drill-down
 - *healthy network = no recurring problems, only new ones*

- Publications:
- <u>http://userver.ftw.at/~ricciato/publications.html</u>

- email:
- ricciato@ftw.at