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(“Those who do not know geometry are not welcome here”)

Plato’s Academy of Philosophy
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Sergios Theodoridis

Part A

J

A Framework fo




@ The set theoretic estimation approach and multiple intersecting
closed convex sets.

@ The fundamental tool of metric projections in Hilbert spaces.
@ Online classification and regression.

@ The concept of Reproducing Kernel Hilbert Spaces (RKHS) and
nonlinear processing.

@ Distributive learning in sensor networks.
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Problem Definition

Given

@ A set of measurements (x,,, y»)
and

N

n=1

which are jointly distributed,
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Problem Definition

Given
@ A set of measurements (z,, y»)>_,, Which are jointly distributed,
and

@ A parametric set of functions 7 = { f.(x) : « € A C R*}.

Compute an f(-), within F, that best approximates y given the value of
x:

y~ f(x).

Special Cases

Smoothing, prediction, curve-fitting, regression, classification, filtering,
system identification, and beamforming.
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The More Classical Approach
Select a loss function £(-,-) and estimate f(-) so that

N
f() € arg minfa(~): acA Z‘C(yn, fa(mn))'

n=1
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Drawbacks

@ Most often, in practice, the choice of the cost is dictated not by
physical reasoning but by computational tractability.
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@ Most often, in practice, the choice of the cost is dictated not by
physical reasoning but by computational tractability.

@ The existence of a-priori information in the form of constraints
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@ The optimization task is solved iteratively, and iterations freeze
after a finite number of steps. Thus, the obtained solution lies in a
neighborhood of the optimal one.
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N
f() € arg Ininfa(~): acA Zﬁ(%% fa(mn))~

n=1

Drawbacks

@ Most often, in practice, the choice of the cost is dictated not by
physical reasoning but by computational tractability.

@ The existence of a-priori information in the form of constraints
makes the task even more difficult.

@ The optimization task is solved iteratively, and iterations freeze
after a finite number of steps. Thus, the obtained solution lies in a
neighborhood of the optimal one.

@ The stochastic nature of the data and the existence of noise add
another uncertainty to the optimality of the obtained solution.

v
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@ In this talk, we are concerned in finding a set of solutions, which
are in agreement with all the available information.

@ This will be achieved in the general context of

Set theoretic estimation.
Convexity.

Mappings or operators, e.g., projections, and their associated fixed
point sets.
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Theorem

Given a Euclidean R™ or a Hilbert space H, the projection
of a point f onto a closed subspace M is the unique point
Py (f) € M that lies closest to f (Pythagoras Theorem).

f

M Pu(f)
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Theorem

Let C be a closed convex set in a Hilbert space . Then, for each
f € H, there exists a unique f, € C such that

I£ = £l = min IS = gll = d(7,).
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Proje

Theorem

Let C be a closed convex set in a Hilbert space #. Then, for each
f € H, there exists a unique f, € C such that

If = fell = lgleigllf — gl = d(£,0).

Definition (Metric Projection Mapping)
The projection is the mapping Po : H — C : f — Po(f) = f.

f
a(f,0)

R™ (H)

Po(f)

v
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Example (Hyperplane H = {g € H : (g,a) = c})
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Example (Hyperplane H = {g € H : (g,a) = c})

fger:(ga)=c}
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Example (Hyperplane H = {g € H : (g,a) = c})

M

A

: | Pu(f)
L gt (g.0)=c}
/ ,,,,,,,,,,,,,,,,,,,, -
/ O a)—c
K ~ia
v

Sergios Theodoridis A Framework for Online Learning Vienna 10/97



Example (Hyperplane H = {g € H : (g,a) = c})
A

A

fger:(ga)=c}

Pu(f)=f-L0-C vren

2
lall
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Example (Halfspace H* :={g € H : (g,a) > c})

y

P+ (f)
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Example (Halfspace H* :={g € H : (g,a) > c})

V
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Example (Closed Ball B[0,6] :=={g € H : ||g|| < })

[f

Pgio.6(f)
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Example (Closed Ball B[0,6] :=={g € H : ||g|| < })

[f

Pgio.6(f)

0
Pooa () = ot

Vf e H.
o = = = ©DHACe
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Example (Icecream Cone K = {(f,7) e H xR : | f|| > 7})

v
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Example (Icecream Cone K = {(f,7) e H xR : | f|| > 7})
R
K P((£,7))
(f:7)
H
(f,7); it Il <.
P ((f,7)) =4 (0 0) if || fl] < -7, V(f,T) € HxR.
I (14:,1), otherwise,
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Composition of Projection Mappings: Let M; and M be closed
of projections:

subspaces in the Hilbert space H. For any f € H, define the sequence

M,

M,
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Composition of Projection Mappings: Let M; and M be closed

subspaces in the Hilbert space H. For any f € H, define the sequence
of projections:

PM1PM2PM1 (f)

M,
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Composition of Projection Mappings: Let M; and M be closed

subspaces in the Hilbert space H. For any f € H, define the sequence
of projections:
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Composition of Projection Mappings: Let M; and M be closed

subspaces in the Hilbert space H. For any f € H, define the sequence
of projections:
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Composition of Projection Mappings: Let M; and M be closed
subspaces in the Hilbert space H. For any f € H, define the sequence
of projections:

<+ Paty Pagy Pagy P, (f)-
M,
!
M,
Theorem ([von Neumann '33])
Forany f € H, lim;, (PMQPM1)n(f) = PM1ﬁM2 (f) J

E] =2 = = = WA

Sergios Theodoridis A Framework for Online Learning



Theorem (POCS?)

Given a finite number of closed convex sets C1, ..., Cp, with (}_, C; # 0, let their

associated projection mappings be Pc, , ..., Pc,. Forany fo € H, this defines the
sequence of points

fn+1 = PCP"'PCl(fn), V’I’L,
converges weakly to an f. € (}_, Ci.

02 'fn
Cy

.

'[Bregman '65], [Gubin, Polyak, Raik '67].
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 Projections Onto Convex S et

Theorem (POCS?)

Given a finite number of closed convex sets C1, ..., Cp, with (}_, C; # 0, let their

associated projection mappings be Pc, , ..., Pc,. Forany fo € H, this defines the
sequence of points

fn+1 = PCP"'PCl(fn), V’I’L,
converges weakly to an f. € (}_, Ci.

Cl PC1P02(fn>

L_/ (P01PGZ)2(f7l)

'[Bregman '65], [Gubin, Polyak, Raik '67].



_ Bxtrapolated Parallel R ro)e ol —

EPPM?
Given a finite number of closed convex sets C1, ..., Cp, with (?_, C; # 0, let their
associated projection mappings be Pc,, ..., Pc,. Let also a set of positive constants

wi, ..., wp such that >>?_ w; = 1. Then for any fo, the sequence

fn+1 :fn‘i',ufn( szPCz(fn) _fn)7 an
i=1

Convex combination of projections

2[Pierra '84].
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EPPM?
Given a finite number of closed convex sets C1, ..., Cp, with (?_, C; # 0, let their
associated projection mappings be Pc,, ..., Pc,. Let also a set of positive constants

wi, ..., wp such that >>?_ w; = 1. Then for any fo, the sequence

fn+1 :fn‘i',ufn( szpcl(fn) _fn>a VTL,
i=1

Convex combination of projections

converges weakly to a point f. in (;_, Ci,

@}

where ., € (¢, M,), fore € (0,1), and I
T2, wi||[Po, (fn)=tn ||
M, = ==L z .
" I2he, wiPo, (Fr)— S| o

2[Pierra '84].
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Adaptive Projected Subgradient Method (APSM)3

Given an infinite number of closed convex sets (Ch ). >0, let their associated projection

mappings be (Pc,, )»>0. For any starting point fo, and an integer ¢ > 0, let the
sequence

fn+1 :fn‘f‘//zn( Z ijC’j(.fn)_fn); VTL,

j=n—qg+1

3[Yamada '03], [Yamada, Ogura '04], [Slavakis, Yamada;, Ogura '086].
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 Infinite Number of Cl0S 6

Adaptive Projected Subgradient Method (APSM)3

Given an infinite number of closed convex sets (C)»>0, let their associated projection

mappings be (Pc,, )»>0. For any starting point fo, and an integer ¢ > 0, let the
sequence

n
fnt1 = fn+ ,Un( Z w; Po; (fn) — fn)a vn,
j=n—qg+1
where ., € (0,2M,), and
Mo S g1 9| Poy Gn)=dn
= o
=5 — g1 w5 Poy ()=
Under certain constraints the above
sequence converges strongly to a @l

point f. € clos(U,,50 MNpsm Cn)-

3[Yamada '03], [Yamada, Ogura '04], [Slavakis, Yamada;, Ogura '086].



The Task

Given a set of training samples xg,...,xx C R™ and a set of

corresponding desired responses 1y, . .., yn, €stimate a function
f(-) : R™ — R that fits the data.

o = = Q>
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_ Application to Machine e e

The Task
Given a set of training samples xg,...,xx C R™ and a set of
corresponding desired responses yj, . . . , yn, €stimate a function

f() : R™ — R that fits the data.

The Expected / Empirical Risk Function approach

Estimate f so that the expected risk based on a loss function L(-, ) is
minimized:
min E{L(/ (@), )}

or, in practice, the empirical risk is minimized:

N
mfinz £(f(:cn), yn).
n=0
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Example (Classification)

For a given margin p > 0, and y,, € {+1, —1}, ¥n, define the soft
margin loss function:

L:(f(wn)’ yn) o= maX{O, p— ynf(xn)}a vn.

L

)\
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Example (Regression)

The square loss function:

2
, vn.

E(f(wn)a yn) = (yn - f(xn))

L

o = = = 21N Ge
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Main Idea

The goal here is to have a solution that is in agreement with all the

available information, that resides in the data as well as in the available
a-priori information.

o = = 21N Ge
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The

Main ldea

The goal here is to have a solution that is in agreement with all the
available information, that resides in the data as well as in the available
a-priori information.

v

The Means
@ Each piece of information, associated with the training pair
(zn,yn), is represented in the solution space by a set.
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_ The Set Theoretic EStimal o

Main Idea

The goal here is to have a solution that is in agreement with all the
available information, that resides in the data as well as in the available
a-priori information.

v

The Means

@ Each piece of information, associated with the training pair
(zn,yn), is represented in the solution space by a set.

@ Each piece of a-priori information, i.e., each constraint, is also
represented by a set.

@ The intersection of all these sets constitutes the family of
solutions.

@ The family of solutions is known as the feasibility set.
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That is, represent each cost and constraint by

an equivalent set (', and find the solution

fe(CncH.

o = = = = ©DHACe
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The Setting

Let the training data set (z,,,y,) C R™ x {+1,-1},n=0,1,....
Assume the two class task,

yn = +]-) wn 6 W].)
UYn = —1, x, € Wa.

Assume linear separable classes.
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Class

The Setting

Let the training data set (z,,,y,) C R™ x {+1,-1},n=0,1,....
Assume the two class task,

yn = +]-) :Bn e W].)
UYn = —1, x, € Wa.

Assume linear separable classes.

The Goal

Find f(xz) =6'z +b, sothat

t _
{0:1:”+b2/% Ton =L ereafter, (0 [¢], @ < [%]).

Olx, +b<p, ify,=—1.

v
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The Piece of Information
Find all those 6 so that y,08'x, > p,

n=20,1,..

o = = = = ©DHACe
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Set

The Piece of Information

Find all those 0 so that y,0'x, > p, n=0,1,...

The Equivalent Set
HY ={0 cR™:y,xl®>p},n=01,....

£
Ynin

{w :yuziw > p}

o waiw=p}
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The feasibility set
For each pair (x,, y,), form the equivalent halfspace H,", and

find 0, () H,.
n

If linearly separable, the problem is feasible.
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n

If linearly separable, the problem is feasible.

The Algorithm

Each H, is a convex set.
@ Start from an arbitrary initial 6.

@ Keep projecting as each H,' is
formed.

min{0,(8,ynwn) }
llen |12

@ P,+(0)=0- YnLn.
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The feasibility set
For each pair (x,,y,), form the equivalent halfspace H;', and

find 0, () H,.
n

If linearly separable, the problem is feasible.

The Algorithm

Each H, is a convex set.
@ Start from an arbitrary initial 6.
@ Keep projecting as each H,' is

formed.
ming 0,(6,ynxn)
® Pyy(6)=0 {umnuz b,
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The linear e-insensitive loss function case

L(z) = max{0, |z| — €}, z€R.
L
0 X
—6\\\ /// €
—€
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The Piece of Information
Given (x,,y,) € R™ x R, find & € R™ such that

|9twn — yn‘ <,

Vn.

o = = = 21N Ge
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Set

The Piece of Information
Given (z,,y,) € R™ x R, find 8 € R™ such that

|0tmn — yn‘ <, Vn.

The Equivalent Set (Hyperslab)
Sple] :={0 e R™ : |0'z, —yn| < €}, Vn.

£

GER™ 0 —yo=o]
{0 eR": 0'x, — y, = —€}
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Projection onto a Hyperslab

Ps,(g(0) = 0 + Bz, VO €R™,

where
Yn—0txn—c
b xn
B:=140, if |9tmn —Un| <€

0tz —yn—€ £ pt
—%, if 'z, — y, > €.

if @'z, — y, < —e,
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Projection onto a Hyperslab

Ps,(g(0) = 0 + Bz, VO €R™,

where )
—Qte, — et
%, |f0$n—yn<—€,
B:=140, if |0twn —Un| <€
', —yn— .
—%, if O'x,, — y, > €.

The feasibility set
For each pair (z,,y,), form the equivalent hyperslab S,,, and

find 0, () Snlel.
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Assume weights w(”) > 0 such that 527 () _ 1. For any

6y c R™,

j=n—q+1%j

n

Oni1 =0+ | > W Psg(8,)— 0, |, ¥n>0,
Jj=n—gq+1

where the extrapolation coefficient u,, € (0,2M,,) with

” S, (en)_ennz ( )

j=n—q+1 g ! n

— ) w F 9 7& 0 s
M, = ||Z?=n_q+1w§n)st[](Bn)—9n||2 j=n—q+1 S [e]( ) n

1, otherwise.
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Definition
Consider a Hilbert space # of functions f : R™ — R.
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Definition
Consider a Hilbert space # of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R”™ x R™ — R such that
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~ Reproducing Kemel Hilbert SR e

Definition
Consider a Hilbert space # of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R”™ x R™ — R such that

@ k(x,) € H,Vx e R™,
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~ Reproducing Kemel Hilbert SR e

Definition
Consider a Hilbert space # of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R”™ x R™ — R such that

@ k(x,) € H,Vx e R™,
@ (f,k(x,-)) = f(x), V& € R™, Vf € H, (reproducing property).
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Repr

Definition
Consider a Hilbert space # of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R”™ x R™ — R such that

@ k(x,) € H,Vx e R™,
@ (f,k(x,-)) = f(x), V& € R™, Vf € H, (reproducing property).
Then H is called a Reproducing Kernel Hilbert Space (RKHS).

Rm
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@ If such a kernel function exists, then it is a symmetric and positive
definite kernel; for any real numbers ag, a1,
Ty, x1,...xy € R™ and any N,

.,an, any
N N
ZZaiajm(mi,mj) > 0.

i=0 j=0

o = = = = ©DHACe
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@ If such a kernel function exists, then it is a symmetric and positive
definite kernel; for any real numbers ag, a1, ..., ay, any
Ty, x1,...xy € R™ and any N,

N N
Z Z aajk(xi, xj) > 0.
i=0 j=0
@ The reverse is also true. Let
K() : R x R™ = R,

be symmetric and positive definite. Then, there exists an RKHS of
functions on R™, such that (-, -) is a reproducing kernel of #.
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Pro

@ If such a kernel function exists, then it is a symmetric and positive
definite kernel; for any real numbers ag, a1, ..., ay, any
Ty, x1,... Ny € R™, and any N,

N N
Z Z aajk(xi, xj) > 0.
i=0 j=0
@ The reverse is also true. Let
K() : R x R™ = R,

be symmetric and positive definite. Then, there exists an RKHS of
functions on R™, such that (-, -) is a reproducing kernel of #.

@ Each RKHS is uniquely defined by a (-, -), and each (symmetric)
positive definite kernel, «(-, -), uniquely defines an RKHS*.

“4[Aronszajn '50]
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@ The celebrated kernel trick is formed as follows.
=] = = = Q>



@ The celebrated kernel trick is formed as follows. Let

x — k(x,-)

Yy— K(y’ )

co(x) € H,
to(y) € H.

o = = = = ©DHACe
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@ The celebrated kernel trick is formed as follows. Let

x — k(x,-)
Then,

Yy— K(y’ )

co(x) € H,
to(y) € H.

(9(x), d(y)) = K(z, y).

o = = = = ©DHACe
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@ The celebrated kernel trick is formed as follows. Let

x — k(x,-)

Yy— H(y’ )

co(x) € H,
to(y) € H.

Then,
(9(x), 9(y)) = K(z, y).

@ This is an important property since it leads to an easy, black box

rule, which transforms a nonlinear task to a linear one; this is done
by the following steps...

o = = = 21N Ge
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@ Assume the implicit mapping

R" >z ¢(x) € H

o = = = 21N Ge
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@ Assume the implicit mapping

@ Solve the problem linearly in .

R" >z ¢(x) € H

o = = = = ©DHACe
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@ Assume the implicit mapping

R™ > x— ¢(x) € H.
@ Solve the problem linearly in .
products.

@ Use an algorithm that can be casted (modified) in terms of inner

o = = = = ©DHACe
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@ Assume the implicit mapping
R™ > x— ¢(x) € H.

@ Solve the problem linearly in .

@ Use an algorithm that can be casted (modified) in terms of inner
products.

@ Replace inner product computations with kernel ones:

(9(x), 9(y)) = K(z, y).

This is the step that brings the nonlinearity in the modeling.

Sergios Theodoridis A Framework for Online Learning Vienna 35/97



@ The Gaussian kernel:

A, y) = exp

0.
2
==yl

0.
0-2

& of
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@ The Gaussian kernel:

A, y) = exp

0.
2 0.
K(z,y)
=z -yl
’
02 o
B E = 0 T 2
@ The polynomial kernel:
Ll
4
d k(. y)
— t 2
K(z,y) = (z'y +1)°,
o
= -2 -1 0 1 2
o = = = = ©DHACe
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@ Let a strictly monotone increasing function: € : [0,00) — R,
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@ Let a strictly monotone increasing function: € : [0,00) — R,
@ and a (cost) function: £: R x R — R U {oo}.
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@ Let a strictly monotone increasing function: € : [0,00) — R,
@ and a (cost) function: £: R x R — R U {oo}.

@ Then, the solution of the task

N

min > L{yn, f(@n)) + Q).

n=0
admits a representation of the form:

N
fe= Zan/ﬁ(mn, ).
n=0

o = = 21N Ge
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@ Let a strictly monotone increasing function: € : [0,00) — R,
@ and a (cost) function: £: R x R — R U {oo}.
@ Then, the solution of the task

N

min > L{yn, f(@n)) + Q).

n=0

admits a representation of the form:

N
fe= Zan/ﬁ(mn, ).
n=0
Example

Lyn, f(@0)) = (yn — f(2n))%,
QUIFID = I£1* = (£, £)-
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The Goal

Let the training data set (x,,,y,) CR™ xR, n=0,1,....

® x, — k(x,,-), Which is a function of one variable.

o = = = 21N Ge
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The Goal

Let the training data set (x,,,y,) CR™ xR, n=0,1,....

® x, — k(x,,-), Which is a function of one variable.
@ Find f € H such that

|f(mn) - yn| <, vn.

o [ﬁ' = v/') Q (:w
Sergios Theodoridis A Framework for Online Learning



The Piece of Information

Given (z,,y,) € R xR, n=0,1,2,..., find f € H such that

[(f,6(@n, ) —ynl <€, Vn.

o = = 21N Ge
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Set

The Piece of Information
Given (x,,y,) € R™ xR, n=0,1,2,..., find f € H such that

‘(fa K(xna'» _yn‘ <e, Vn. )

The Equivalent Set (Hyperslab)
Sn[e] = {fGHI |<fa’€(mna')>_yn| SE}, vn.

= €}
(S (@, ) =y = —€}
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Projection onto a Hyperslab

PSn[e](f) =f+ /Bl{'(mna ), Vf EH,

where
%’ if (fs k(@n, ) — yn < —¢,
B=40, if [(f, 5(xn, ")) —uynl <6,
_slEndze it (f, k(zy,,-)) — g > €.
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Projection onto a Hyperslab

PSn[e](f) =f+ /Bli(wna ), Vf EH,

where
o= i (f,n(n, ) — v < =6
6 = 0, if ‘(fa H(mna )> - yn’ S &
- (f,lﬂf;l(!;;?;;:l)}n—ﬁ’ if <f’ /‘f(mn? )) — Yn > €.

The feasibility set
For each pair (z,,y,), form the equivalent hyperslab S,,, and

find f.€ () Sule.

n>ng

Sergios Theodoridis A Framework for Online Learning Vienna 40/97



For fy € H, execute the following algorithm®

fosr=fatun | D WP g(fu) — fa |, ¥ >0,
j=n—q+1

where the extrapolation coefficient u,, € (0,2M,,) with

P a1 @5 IPs (g (fn) = a2

n (n)
Mn — ||Z?=n_q+1 w§n)PSj[e](fn)_fn||27 f Zj:n_q_H wj st[e] (fn) 7é fna

1, otherwise.

5[Slavakis, Theodoridis, Yamada '09].
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As time goes by:
n—1
. (n)
In= 27i k(i ).
i=0
=] F = = A




As time goes by:
n—1
foi= 3o ().
i=0

Memory and computational load grows unbounded as n — oo!

o = = = 21N Ge
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As time goes by:

n—1

fo =Y k(s ).

=0

Memory and computational load grows unbounded as n — oo!

To cope with the problem, we additionally constrain the norm of f,, by a
predefined § > 0%:

Vn > 0,

fo € BJ0,8] == {f €H:|f| <5}: Closed Ball.

5[Slavakis, Theodoridis, Yamada '08], [Slavakis, Theodoridis '08]. - = DA



As time goes by:

n—1

fo =Y k(s ).

=0

Memory and computational load grows unbounded as n — oo!

To cope with the problem, we additionally constrain the norm of f,, by a
predefined § > 0%:

Yn >0, fo€B[0,0]:={feH:|f|l<d}: Closed Ball.
Goal
Thus, we are looking for a classifier f € H such that

F€B[0,5]N([) Sule)-

n>ng

8[Slavakis, Theodoridis, Yamada '08], [Slavakis, Theodoridis '08].
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PS,L[e](fn)

Ps, q(fn)
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Ps, q(fn)
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Problem Definition

@ In a distributed network, the nodes are tasked to collect
information and estimate a parameter of interest. The general
concept can be summarized as follows:

Sergios Theodoridis A Framework for Online Learning Vienna 44197



 Distributive Learning for S e S0 —

Problem Definition

@ In a distributed network, the nodes are tasked to collect
information and estimate a parameter of interest. The general
concept can be summarized as follows:

The nodes sense an amount of data from the environment.
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_ Distributive Learning for e 0

Problem Definition

@ In a distributed network, the nodes are tasked to collect
information and estimate a parameter of interest. The general
concept can be summarized as follows:

The nodes sense an amount of data from the environment.
Computations are performed locally in each node.
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Problem Definition

@ In a distributed network, the nodes are tasked to collect
information and estimate a parameter of interest. The general
concept can be summarized as follows:

The nodes sense an amount of data from the environment.
Computations are performed locally in each node.

Each node transmits the locally obtained estimate to a
neighborhood of nodes.
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_ Distributive Learning for e 0

Problem Definition

@ In a distributed network, the nodes are tasked to collect
information and estimate a parameter of interest. The general
concept can be summarized as follows:

The nodes sense an amount of data from the environment.
Computations are performed locally in each node.

Each node transmits the locally obtained estimate to a
neighborhood of nodes.

The goal is to drive the locally computed estimates to
converge to the same value. This is known as consensus.
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@ The most commonly used topology is the diffusion network

#5's ne

ighborhood

#1's neighborhood
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Problem Formulation

@ Let a node set denoted as NV := {1,2,..., N} and each node, k, at
time, n, has access to the measurements

yk(n) € R, Tin € Rm,
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Problem Formulation

@ Let a node set denoted as NV := {1,2,..., N} and each node, k, at
time, n, has access to the measurements

yk(n) € R, Tin € Rm,
we assume that there exists a linear system, 6., such that
yr(n) = @}, 0+ + vy (n),

where v (n) is the noise.
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Problem Formulation

@ Let a node set denoted as NV := {1,2,..., N} and each node, k, at
time, n, has access to the measurements

yk(n) € R, Tin € Rm,
we assume that there exists a linear system, 6., such that
yr(n) = @}, 0+ + vy (n),

where vi(n) is the noise.
The task is to estimate the common @...

Sergios Theodoridis A Framework for Online Learning Vienna 46 /97



lENk

o = = = = ©DHACe
Sergios Theodoridis A Framework for Online Learning

@ Combine estimates received from the neighborhood N:

Br(n) =Y cra(n+1)6;(n).




@ Combine estimates received from the neighborhood N:

Pr(n) =

=Y cri(n+1)8,(n).

lENk
@ Perform the adaptation step”:

B(n+1) = dr(n)+un(n+1)

J=n—q+1

> wkiPs,,(¢r(n)) — di(n)

"[Chouvardas, Slavakis, Theodoridis, '11].
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R‘m
05(n)
,’.\\
#
N
Y \.#2 06("1}'
02(71) ,—'/
#-1“s"1-1—e-1-;hb0rhood
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O.n)
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#1’s neighborhood
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#1’s neighborhood
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@ Incorporate a-priori information into our algorithmic framework.
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@ Incorporate a-priori information into our algorithmic framework.
@ An operator theoretic approach will be followed.
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@ Incorporate a-priori information into our algorithmic framework.
@ An operator theoretic approach will be followed.

@ Such an approach will be illustrated through two paradigms:
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@ Incorporate a-priori information into our algorithmic framework.

@ An operator theoretic approach will be followed.
» Beamforming task.

@ Such an approach will be illustrated through two paradigms:
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@ Incorporate a-priori information into our algorithmic framework.

@ An operator theoretic approach will be followed.
» Beamforming task.

» Sparsity-aware learning problem.
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~ Outline of Part B

@ Incorporate a-priori information into our algorithmic framework.
@ An operator theoretic approach will be followed.

@ Such an approach will be illustrated through two paradigms:
» Beamforming task.
» Sparsity-aware learning problem.
@ Our objective is to show that a large variety of constrained online
learning tasks can be unified under a common umbrella; the
Adaptive Projected Subgradient Method (APSM).
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@ A mapping defined in a Hilbert space H:

T:H—H.
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@ A mapping defined in a Hilbert space H:

T:H — H.
@ Given a mapping 7' : H — H, its fixed point set is defined as

Fix(T) = {f e H:T(f) = f},

i.e., all those points which are unaffected by T'.
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@ A mapping defined in a Hilbert space H:
T:H—H.
@ Given a mapping 7' : H — H, its fixed point set is defined as
Fix(T) = {f € #:T(f) = f},

i.e., all those points which are unaffected by T'.

Example

If C'is a closed convex set in W\ pp)

H, then Fix(Pc) = C. R" <
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@ Antenna arrays are vastly utilized for space-time filtering:

Output

Yn
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Jammer

My—1

@ Antenna arrays are vastly utilized for space-time filtering:

» The superscript x stands for complex conjugation.
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@ Antenna arrays are vastly utilized for space-time filtering:

Jammer

My —
My~

w(my.ma,n)

(

£

» The superscript x stands for complex conjugation.
» SOI: Signal Of Interest.

o =l = = = Q>
Sergios Theodoridis A Framework for Online Learning

. man 1)

Output



Jammer
My~
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@ Antenna arrays are vastly utilized for space-time filtering:

w(my.ma,n)

(

' g, = 1) s
)

» The superscript x stands for complex conjugation.
» SOI: Signal Of Interest.

@ After some re-arrangements, the output of the array is given by
~ . t
Yo =0'x,, n=0,1,2,....
o> < = = DA

0*(1my. ma, 0)

(m1,ma,1)

Output



@ Antenna arrays are vastly utilized for space-time filtering:

Jammer

Jammer

My—1

w(my.ma,n)

M -1 L Output

(i, ma.n 1)

- o

» The superscript x stands for complex conjugation.
» SOI: Signal Of Interest.

@ After some re-arrangements, the output of the array is given by
Gn=0'z,, n=0,1,2....

The beamformer is the vector 6.
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The Goal of Beamforming

By utilizing all the available a-priori knowledge, reconstruct the SOls,
while, in the meantime, suppress the jamming signals.
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while, in the meantime, suppress the jamming signals.

A-priori information
@ Known locations of the SOIs and/or the jammers.

@ Robustness against erroneous information and array
imperfections:
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The Goal of Beamforming

By utilizing all the available a-priori knowledge, reconstruct the SOls,
while, in the meantime, suppress the jamming signals.

A-priori information
@ Known locations of the SOIs and/or the jammers.
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imperfections:
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The Goal of Beamforming

By utilizing all the available a-priori knowledge, reconstruct the SOls,
while, in the meantime, suppress the jamming signals.

A-priori information
@ Known locations of the SOIs and/or the jammers.

@ Robustness against erroneous information and array
imperfections:
Knowledge of the approximate location of the SOIs and jammers.
Array calibration errors.
Inoperative array elements.
Bounds on the weights of the array elements.

Given the previous a-priori info, and the set of data (y,,, ),
n=20,1,2,..., compute 8 such that

0z, ~y,, Vn.
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Definition (Steering vector)
Each transmitting source is associated to a steering vector, s, defined as the vector
which collects all the signal values in the array if
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Definition (Steering vector)
Each transmitting source is associated to a steering vector, s, defined as the vector
which collects all the signal values in the array if
@ only the source of interest transmits a signal of value 1,
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Definition (Steering vector)

Each transmitting source is associated to a steering vector, s, defined as the vector
which collects all the signal values in the array if

@ only the source of interest transmits a signal of value 1,
@ and there is no noise in the system.
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Definition (Steering vector)

Each transmitting source is associated to a steering vector, s, defined as the vector
which collects all the signal values in the array if

@ only the source of interest transmits a signal of value 1,
@ and there is no noise in the system.

Remark: The steering vector comprises information like the location of the associated
source, and the geometry of the array.

Sergios Theodoridis A Framework for Online Learning Vienna 54 /97



_ Distortionless and Nl G0

Definition (Steering vector)

Each transmitting source is associated to a steering vector, s, defined as the vector
which collects all the signal values in the array if

@ only the source of interest transmits a signal of value 1,
@ and there is no noise in the system.

Remark: The steering vector comprises information like the location of the associated
source, and the geometry of the array.

Distortionless constraint
If sso is the steering vector associated to a SOI, then we would like to have:

Stso|9 =1.
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_ Distortionless and Nl G0

Definition (Steering vector)

Each transmitting source is associated to a steering vector, s, defined as the vector
which collects all the signal values in the array if

@ only the source of interest transmits a signal of value 1,
@ and there is no noise in the system.

Remark: The steering vector comprises information like the location of the associated
source, and the geometry of the array.

Distortionless constraint
If sso is the steering vector associated to a SOI, then we would like to have:

Stso|0 =1.

Nulls

If sjam is the steering vector associated to a jammer, then we would like to have:

sjtamO =0.
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Cc'o=g.

o =l = = = Q>
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A large variety of a-priori knowledge in beamforming problems can be
cast by means of affine constraints; given a matrix C and a vector g:

Cc'o=g.

Example
Let C := [sso, Sjam), and g := [1,0]". J
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Affi

A large variety of a-priori knowledge in beamforming problems can be
cast by means of affine constraints; given a matrix C and a vector g:

Cc'o=g.

Example
Let C := [sso, Sjam), and g := [1,0]".

Define the following affine set V := arg mingegm ||C'6 — g,
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A large variety of a-priori knowledge in beamforming problems can be
cast by means of affine constraints; given a matrix C and a vector g:

Cc'o=g.

Example
Let C := [sso, Sjam), and g := [1,0]".

Define the following affine set V := arg mingegm ||C?6 — g||, which
contains, in general, an infinite number of points, and covers also the
case of inconsistent a-priori constraints, i.e., the case:

Vo, C'0+g.

v
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Projection onto the affine set

Given V := arg mingcgm ||C*0 — g||, the metric projection mapping
onto V' is given by

Py(0)=6—-C"(C'0 —g), YOcR™,

where (-)T denotes the Moore-Penrose pseudoinverse of a matrix.

(7]
Rm
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@ Attime n, given the training data (y,, x, ), define the hyperslab:

Sple] = {0 cR™: ‘:1320 —yn‘ <€}

o = = = = ©DHACe
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@ Attime n, given the training data (y,, x, ), define the hyperslab:
Snle] = {0 € R™ : |2/,0 — yn| < €}.
@ For any initial point 6y, and Vn,

n

Oni1 =Py | 0n+ pn z wz(n)PSi[e] (en) -6, )
i=n—q+1

tn € (0,2M,,),
;'l:nfq+1 w;”) ||F,S‘7 [e] (en)—en”z
[y w§n)st (€] (On) =62
3 nmger ) P, 1(6n) # On,
1, otherwise.

M, =
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@ Robustness is a key design issue in beamforming.
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@ Robustness is a key design issue in beamforming.
@ There are cases, for example, where the location of the SOl is
known approximately.
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@ Robustness is a key design issue in beamforming.
known approximately.

@ There are cases, for example, where the location of the SOl is

@ A mathematical formulation for such a scenario is as follows;

o = = = 21N Ge
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@ Robustness is a key design issue in beamforming.
@ There are cases, for example, where the location of the SOl is
known approximately.

@ A mathematical formulation for such a scenario is as follows;
» given the approximate steering vector s,
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@ Robustness is a key design issue in beamforming.
@ There are cases, for example, where the location of the SOl is
known approximately.

@ A mathematical formulation for such a scenario is as follows;
» given the approximate steering vector s,
B[é,e’]

» and a ball of uncertainty B[s, /], of radius ¢’ around §:
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@ Robustness is a key design issue in beamforming.

@ There are cases, for example, where the location of the SOl is
known approximately.

@ A mathematical formulation for such a scenario is as follows;

» given the approximate steering vector s,
» and a ball of uncertainty B[s, /], of radius ¢’ around §:

B[é,e’]

» calculate those 6 such that, for some user-defined ¢/ > 0,

O'sc[l—€'1+¢€"], Vse B3]
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@ The previous task breaks down to a number of more fundamental
problems of the following type; find a vector that belongs to

T = {9 ER™: 0ls >, Vs € B[g,el]} _ { all vectors that satisfy an

infinite number of inequalities

@ If T # (), then the previous problem is equivalent to®
R

finding a pointin K N1I, Knn

K: an icecream cone, N\ é ™

IT: a hyperplane. |

Bl

8[Slavakis, Yamada’ 07], [Slavakis, Theodoridis, Yamada.'09].
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Given (z,,y,), find a @ € R™ such that

|9twn — yn‘ <,

o = = = 21N Ge
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Given (z,,y,), find a @ € R™ such that

|9twn — yn‘ <,

0's >, Vs € B[§,e/]7

(Robustness).

o = = = 21N Ge
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Assume weights w(”) > 0 such that 527 () _ 1. For any

6y c R™,

j=n—q+1%j

n

Oni1 = PiPi [ Ontin | D wPsg(0:)—6,]]. ¥n>0,
Jj=n—gq+1

where the extrapolation coefficient u,, € (0,2M,,) with

] =n—qg+1 J ”PS (en)_en”2 . ( )
My, = IIZj:n_q+1w§”)Psﬂ](on)—onn?’ it > jmn—gr1%; Ps;ld(On) # bn,

1, otherwise.
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How did we handle a-priori information?
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How did we handle a-priori information?
@ Each piece of a-priori info was represented by a closed convex set, e.g., K, II.
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How did we handle a-priori information?
@ Each piece of a-priori info was represented by a closed convex set, e.g., K, II.

@ In order to be in agreement with all of the pieces of the a-priori info, we looked
for a point into the intersection of the closed convex sets, e.g., K N II.

o = = ¥
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How did we handle a-priori information?

@ Each piece of a-priori info was represented by a closed convex set, e.g., K, II.

@ In order to be in agreement with all of the pieces of the a-priori info, we looked
for a point into the intersection of the closed convex sets, e.g., K N II.

@ In algorithmic terms, we utilized the composition mapping PPk : R™ — R™.
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_ Handling A-Priori o

How did we handle a-priori information?

@ Each piece of a-priori info was represented by a closed convex set, e.g., K, II.

@ In order to be in agreement with all of the pieces of the a-priori info, we looked
for a point into the intersection of the closed convex sets, e.g., K N II.

@ In algorithmic terms, we utilized the composition mapping PPk : R™ — R™.

This strategy reminds us of POCS:

POCS
Given a finite number of closed convex sets C1, ..., Cp, with (?_, C; # 0, let their
associated projection mappings be Pc,, ..., Pc,. Then,

P
V0 €R™, (Pg,--Pc,)"(0) —— 0. € QC’
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How did we handle a-priori information?

@ Each piece of a-priori info was represented by a closed convex set, e.g., K, II.

@ In order to be in agreement with all of the pieces of the a-priori info, we looked
for a point into the intersection of the closed convex sets, e.g., K N II.

@ In algorithmic terms, we utilized the composition mapping PPk : R™ — R™.

This strategy reminds us of POCS:

POCS
Given a finite number of closed convex sets C1, ..., Cp, with (?_, C; # 0, let their
associated projection mappings be Pc,, ..., Pc,. Then,

P
V0 €R™, (Pg,--Pc,)"(0) —— 0. € QC

Key assumption

The a-priori info is consistent, i.e., (_, Ci # 0.
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@ Is the case of inconsistent a-priori info possible in practice?
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@ Is the case of inconsistent a-priori info possible in practice?

@ Yes, in highly constrained learning tasks; the more constraints we
add to the problem, the smaller the intersection of the associated
convex sets becomes.
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Incons

@ Is the case of inconsistent a-priori info possible in practice?

@ Yes, in highly constrained learning tasks; the more constraints we
add to the problem, the smaller the intersection of the associated

convex sets becomes. |

Example

A beamforming problem where there is erroneous info on SOI and
jammer steering vectors, array calibration errors, info on inoperative
array elements, and stringent bounds on the weights of the array.
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Inconsistent A-Prior Info il

@ Is the case of inconsistent a-priori info possible in practice?

@ Yes, in highly constrained learning tasks; the more constraints we
add to the problem, the smaller the intersection of the associated
convex sets becomes. |

Example

A beamforming problem where there is erroneous info on SOI and
jammer steering vectors, array calibration errors, info on inoperative
array elements, and stringent bounds on the weights of the array.

How do we deal with the case of inconsistent a-priori info, i.e.,

P
ﬂ C; =07
i=1
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Definition (o)

All those points of K which minimize a function ® of the distances
—1
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Given a number of a-priori constraints, represented as p closed convex sets,
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Given a number of a-priori constraints, represented as p closed convex sets,
@ Identify one of them as the absolute constraint /C, and rename the other ones as
C1,Co,...,Cp_1.
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Given a number of a-priori constraints, represented as p closed convex sets,
@ Identify one of them as the absolute constraint /C, and rename the other ones as
C1,Co,...,Cp_1.

. . . —1
@ Assign to each C; a convex weight 3;, i.e., 8; € (0,1] and >0 8; = 1.

o [ﬁ' = = :f v/') Q (:w
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Given a number of a-priori constraints, represented as p closed convex sets,

@ Identify one of them as the absolute constraint /C, and rename the other ones as
C1,Co,...,Cp_1.

@ Assign to each C; a convex weight 8;, i.e., 5; € (0,1] and Zf:‘ll Bi = 1.

@ Define the function:

p—1
®(0) = %ZBidQ(O, Cy), Voek.
=1

Our objective is to look for the minimizers K4 of this function.
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Given a number of a-priori constraints, represented as p closed convex sets,

@ Identify one of them as the absolute constraint /C, and rename the other ones as
C1,Co,...,Cp_1.

@ Assign to each C; a convex weight 8;, i.e., 5; € (0,1] and Zf:‘ll Bi = 1.

@ Define the function:

152
®(0) =3 ;md (6,C:), VOEK.
Our objective is to look for the minimizers Ko of this function.

Notice that ® = I — Zf;ll i Po; . J
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Given a number of a-priori constraints, represented as p closed convex sets,

@ Identify one of them as the absolute constraint /C, and rename the other ones as
C1,Co,...,Cp_1.

@ Assign to each C; a convex weight 3;, i.e., 8; € (0,1] and 7 6; = 1.
@ Define the function:

152
®(0) =3 ;md (6,C:), VOEK.
Our objective is to look for the minimizers Ko of this function.

Notice that ® = I — Zf;ll i Po; . J

@ Define the mapping 7': R™ — R™ as

T = Pc (I— A(I—S&Pgi)> . A€ (0,2).
=1
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Given a number of a-priori constraints, represented as p closed convex sets,

@ Identify one of them as the absolute constraint /C, and rename the other ones as
C1,Co,...,Cp_1.

@ Assign to each C; a convex weight 3;, i.e., 8; € (0,1] and 7 6; = 1.
@ Define the function:

152
®(0) =3 ;md (6,C:), VOEK.
Our objective is to look for the minimizers Ko of this function.

Notice that ® = I — Zf;ll i Po; . J

@ Define the mapping 7': R™ — R™ as

p—1
i=1
® Then, Fix(7) = K.
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For any 6y € R™,

O0h1=T1|6,+ pun Z w; )PS e] 0, —6, , VYn>0,
j=n—q+1
where the extrapolation coefficient y,, € (0,2M,,) with
Pnqr1 @S I1Ps; 1 (6n) =12
Mn = ||Ej:n,q+1w
L,

Ps;1(0n)—6n 2’

otherwise

o = = = = ©DHACe
Sergios Theodoridis A Framework for Online Learning
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Problem definition
o = = = 9AQAcC
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Problem definition

@ In a number of applications, many of the parameters to be estimated are a-priori
known to be zero. That is, the parameter vector, 0, is sparse.

et = [*a*7070,0,*,0, o0 ]
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_ Sparsity-Aware Leanming

Problem definition
@ In a number of applications, many of the parameters to be estimated are a-priori
known to be zero. That is, the parameter vector, 0, is sparse.
0" = [¥,%,0,0,0,%,0,...].

If the locations of the zeros were known, the problem would be trivial.
However, the locations of the zeros are not known a-priori. This makes the task
challenging.
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et = [*a*7070,0,*,0, o0 ]

If the locations of the zeros were known, the problem would be trivial.
However, the locations of the zeros are not known a-priori. This makes the task
challenging.

@ Typical applications include echo cancellation in Internet telephony, MIMO
channel estimation, Compressed Sensing (CS), etc.
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Problem definition

@ In a number of applications, many of the parameters to be estimated are a-priori
known to be zero. That is, the parameter vector, 0, is sparse.

et = [*a*7070,0,*,0, o0 ]

If the locations of the zeros were known, the problem would be trivial.
However, the locations of the zeros are not known a-priori. This makes the task
challenging.

@ Typical applications include echo cancellation in Internet telephony, MIMO
channel estimation, Compressed Sensing (CS), etc.

@ Sparsity promotion is achieved via /;-norm regularization of a loss function:

N

0 t
Juin _Oﬁ(yn,wnt‘)) +Al6ll,, A>o0.
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The {3 norm

16]ly == card{i : 6; # 0}.

012

015

o = = = = ©DHACe
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The {3 norm

16]ly == card{i : 6; # 0}.

012

015
@ Consider the linear model

Vn,

o [ﬁ' = = :f v/') Q (:w
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Yn = mfﬂ + vy,
where (v,,),>0 denotes the noise process.



The {3 norm
16]ly == card{i : 6; # 0}.

@ Consider the linear model:

015
ot 0
yn - m'n + 'Una
where (v,,),>0 denotes the noise process.
@ Define Xy = [z, 21,

Vn,

S xN], YN = [Yo,v1,- - -, yn]t, and e > 0.
e




- Measuring Sparsity.

The ¢, norm

16]]o == card{i : 6; # 0}.

@ Consider the linear model:
Yn = acfﬂ + vp, Vn,

where (v,,),>0 denotes the noise process.
o Define Xy = [z, x1,...,2N], YN = [Yo,¥1,---,yn]}, and e > 0.
@ A typical Compressed Sensing task is formulated as follows:
in ||@
Juin |[6]l
st ||X560 —yn| <e
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The ¢, norm (0 < p < 1)

m
191, = { > 16:l”
=1

8=

Var ks

NIZ/N
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The ¢,-ball case
o = = DAG
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The ¢,-ball case
@ Given (xy,yn), n =0,1,2,..., find 8 such that

|0tmn—yn| <e n=0,1,2,...

0 € By, 6] = {0 eR™: ||6'||, < 6}.
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The ¢,-ball case
@ Given (xy,yn), n =0,1,2,..., find 8 such that

|0tmn—yn| <e n=0,1,2,...

0 € By, 6] = {0 eR™: ||6'||, < 6}.

@ The recursion:

Oni1 = Pp, (5 | On + pin Z w](n)st[e] (6,) — 0,
Jj=n—q+1
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Remark: The convergence can be significantly speeded up, if in place of the ¢;-ball a
weighted ¢1-ball is used to constrain the solutions.
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Remark: The convergence can be significantly speeded up, if in place of the ¢;-ball a
weighted ¢1-ball is used to constrain the solutions.

@ Definition:

m
1611, =D wil6s],
=1

By, [wn, 0] = {0 € R™ - ||6], , < 6}.
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Remark: The convergence can be significantly speeded up, if in place of the ¢;-ball a
weighted ¢1-ball is used to constrain the solutions.

@ Definition:
11, = > wil6il,
=1
By, [wn, 8] = {6 eR™ : ||0]], , < d}.
@ Time-adaptive weighted norm:

1
Wn. 4 = ———————.
T On ] + €,
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Remark: The convergence can be significantly speeded up, if in place of the ¢;-ball a
weighted ¢1-ball is used to constrain the solutions.

@ Definition:

161l,,., = > wiltil,
=1
Be,[wn, 0] = {8 €R™ : (6], ,, <5}
@ Time-adaptive weighted norm:

1
Wni = ———————.
T 0l + €

@ The recursion®:

Ont1 = Pp, (w,.s) <en + fin ( > Wi Ps; g (0) — 0n>> :

Jj=n—q+1

9[Kopsinis, Slavakis, Theodoridis, '11].

Sergios Theodoridis A Framework for Online Learning Vienna 74197



Sergios Theodoridis

A Framework fo




Sergios Theodoridis

A Framework fo




Sergios Theodoridis

A Framework for Online Learning

A



Sergios Theodoridis

A Framework for Online Learning

A



o = = = = ©DHACe
Sergios Theodoridis A Framework for Online Learning



o = = = = ©DHACe
Sergios Theodoridis A Framework for Online Learning



operation.

Projecting onto By, [w,, d] is equivalent to a specific soft thresholding
o = = = = wace



constraint.

Note that our constraint, i.e., the weighted ¢;-ball is a time-varying
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Note that our constraint, i.e., the weighted ¢;-ball is a time-varying
constraint.
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m = 1024, ||6«||, = 100 wavelet coefficients. The radius of the ¢1-ball is set to § := 101.

=] F = = £ DA

Sergios Theodoridis A Framework for Online Learning



3 2 T T T T
0
-2
= -4
g
&
2 -6
-8
-10
-3 -12
[ 500 1000 1500 2000 2500 3000 3500 4000 [¢] 1000 2000 3000 4000
Signal Samples

i, (Wavelet component)

m = 4096. The radius of the ¢;-ball is set to ¢ := 40.
The sum of two chirp signals.
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What we have seen so far corresponds to soft thresholding operations.
Hard thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
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What we have seen so far corresponds to soft thresholding operations.
Hard thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
@ Keep those as they are, while nullify the rest of them.
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What we have seen so far corresponds to soft thresholding operations. J

Hard thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
@ Keep those as they are, while nullify the rest of them.

]

Generalized thresholding

@ Identify the K largest, in magnitude, components of a vector 6.

Sergios Theodoridis A Framework for Online Learning Vienna 80/97



What we have seen so far corresponds to soft thresholding operations. J

Hard thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
@ Keep those as they are, while nullify the rest of them.

Generalized thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
@ Shrink, under some rule, the rest of the components.
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(a) Hard, soft thresholding, and the ridge (b) The SCAD and garrote thresholding.
regression estimate.
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Penalized Least-Squares Thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
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Penalized Least-Squares Thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
@ Let d; be one of the rest of the components.
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~ Mathematical Formulation o

Penalized Least-Squares Thresholding
@ Identify the K largest, in magnitude, components of a vector 6.
@ Let 6; be one of the rest of the components.
@ In order to shrink 6;, solve the optimization task:
. 1,4 2 A
—(0; —0; Ap(10i]), A >0,
min 5 (6: = 6:)" + p(|6:])

where p(-) stands for a user-defined penalty function, which might be
non-convex.
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Penalized Least-Squares Thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
@ Let d; be one of the rest of the components.
@ In order to shrink 6;, solve the optimization task:
. 1,4 2 A

min =(60; —0;)" + Ap(|0:]), A >0,

min 5 (0 —0:)" + (| 0:)
where p(-) stands for a user-defined penalty function, which might be
non-convex.

@ Under some mild conditions, the previous optimization task possesses a unique
solution 6.
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_ Mathematical oAt o

Penalized Least-Squares Thresholding

@ Identify the K largest, in magnitude, components of a vector 6.
@ Let d; be one of the rest of the components.
@ In order to shrink 6;, solve the optimization task:
. 1,4 2 A

min =(60; —0;)" + Ap(|0:]), A >0,

min 5 (0 —0:)" + (| 0:)
where p(-) stands for a user-defined penalty function, which might be
non-convex.

@ Under some mild conditions, the previous optimization task possesses a unique
solution 6.

Definition (Generalized Thresholding Mapping)

The Generalized Thresholding mapping is defined as follows:

TGT : H»L — éz*
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@ Given K, define the set of all tuples of length K:
T = {(’il,ig,...,’iK) 1<y < <. <R Sm}
=} = = = DA



@ Given K, define the set of all tuples of length K:
T = {(’il,ig, eyt

ix):1<ig <i2<...<iK§m}.
@ Given atuple J € .7, define the subspace:

My ={0ecR":0;,=0,Vi¢ J}
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@ Given K, define the set of all tuples of length K
T = {(’il,ig,...,’iK) 1<y < <. <R Sm}
@ Given atuple J € .7, define the subspace

My ={0ecR":0;,=0,Vi¢ J}
@ Then, the fixed point set of Tg7 is a union of subspaces

Fix(Tgr) = | J MJ, (non-convex set).
JeT

o = = 21N Ge
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@ Given K, define the set of all tuples of length K:
T ={(i1,02,...,ix) 1 <iy1 <ip < ...<ig <m}.
@ Given atuple J € .7, define the subspace:
My ={0ecR":0;,=0,Vi¢ J}
@ Then, the fixed point set of Tg7 is a union of subspaces:
Fix(Tgr) = | J MJ, (non-convex set).
Jeg

Example
For the 3-dimensional case R?, and if K = 2,

zy-plane U yz-plane

Fix(Tor) = U zz-plane.

v
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Definition (Nonexpansive Mapping)

A mapping T : H — H is called nonexpansive if
1T(f1) =TI < Ifr = fall

Vf1, f2 € H.
The fixed point set of a nonexpansive mapping is closed and convex.

[m] = - = QR
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First

Definition (Nonexpansive Mapping)
A mapping T : ‘H — H is called nonexpansive if

1T(f1) = T(f)ll < lfr = fall, Vfi, fa € H.

The fixed point set of a nonexpansive mapping is closed and convex.

v

Example (Projection Mapping)

fi
. H

Ih= £l

.
2

v
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First

Definition (Nonexpansive Mapping)
A mapping T : ‘H — H is called nonexpansive if

1T(f1) = T(f)ll < lfr = fall, Vfi, fa € H.

The fixed point set of a nonexpansive mapping is closed and convex.

v

Example (Projection Mapping)

fi

Ih= £l

f

v
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_ First Steps Towards a Uiy

Definition (Nonexpansive Mapping)
A mapping T : ‘H — H is called nonexpansive if

1T(f1) = T(f)ll < lfr = fall, Vfi, fa € H.

The fixed point set of a nonexpansive mapping is closed and convex.

v

Example (Projection Mapping)

h-sl |
p— FiX(PC) =C.

fa 1Po(f1) = Pe(fo)ll y
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~ Quasi-nonexpansive: Map i

Definition (Quasi-nonexpansive Mapping)
A mapping T : H — H, with Fix(T') # (), is called quasi-nonexpansive,

if
IT(f) =Rl <IIf=hll, VfeHVheFix(T).

The fixed point set of T is convex.

H

o

v
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~ Quasi-nonexpansive: Map i

Definition (Quasi-nonexpansive Mapping)
A mapping T : H — H, with Fix(T') # (), is called quasi-nonexpansive,

if
IT(f) =Rl <IIf=hll, VfeHVheFix(T).

The fixed point set of T is convex.
" /
\
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~ Quasi-nonexpansive: Map i

Definition (Quasi-nonexpansive Mapping)
A mapping T : H — H, with Fix(T') # (), is called quasi-nonexpansive,

if
IT(f) =Rl <IIf=hll, VfeHVheFix(T).

The fixed point set of T is convex.

" f
L
(f)
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~ Quasi-nonexpansive: Map i

Definition (Quasi-nonexpansive Mapping)
A mapping T : H — H, with Fix(T') # (), is called quasi-nonexpansive,
if

IT(f) = hll <|If—=Rll, VfeH,VheFixT).

The fixed point set of T is convex.

v
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~ Quasi-nonexpansive: Map i

Definition (Quasi-nonexpansive Mapping)
A mapping T : H — H, with Fix(T') # (), is called quasi-nonexpansive,
if

IT(f) = hll <|If—=Rll, VfeH,VheFixT).

The fixed point set of T is convex.

IT(f) = Rl

v
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Every nonexpansive mapping is quasi-nonexpansive.

o = = = 21N Ge
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Projecting onto arbitrary separating hyperplanes generates a
guasi-nonexpansive mapping which is not nonexpansive.

Sergios Theodoridis A Framework for Online Learning Vienna 87/97



Projecting onto arbitrary separating hyperplanes generates a
guasi-nonexpansive mapping which is not nonexpansive.

Sergios Theodoridis A Framework for Online Learning Vienna 87/97



Projecting onto arbitrary separating hyperplanes generates a
guasi-nonexpansive mapping which is not nonexpansive.

S

Sergios Theodoridis A Framework for Online Learning Vienna 87/97



Projecting onto arbitrary separating hyperplanes generates a
guasi-nonexpansive mapping which is not nonexpansive.

S

Sergios Theodoridis A Framework for Online Learning Vienna 87/97



Projecting onto arbitrary separating hyperplanes generates a
guasi-nonexpansive mapping which is not nonexpansive.

T(fl) f1

=
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Projecting onto arbitrary separating hyperplanes generates a
guasi-nonexpansive mapping which is not nonexpansive.

e
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Projecting onto arbitrary separating hyperplanes generates a
guasi-nonexpansive mapping which is not nonexpansive.

i = foll
T(fl) f1
\ ‘\/

2 Lo

IT(f1) =Tl
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Definition (Subgradient)
Given a convex function © : H — R, the subgradient, ©’(f), is an element of H such
that

(9—1,0'(f)) +6(f) <O(g), VgeH.

In other words, the hyperplane {(g, (g — f,©'(f)) + ©(f)) : g € H}, supports the
graph of © at the point (f,O(f)).

Definition (Level set)

lev<o(©) =={f € H:O(f) <0}.
o)
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Definition (Subgradient)
Given a convex function © : H — R, the subgradient, ©’(f), is an element of H such
that

(9—1,0'(f)) +6(f) <O(g), VgeH.

In other words, the hyperplane {(g, (g — f,©'(f)) + ©(f)) : g € H}, supports the
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Definition (Level set)

lev<o(©) =={f € H:O(f) <0}.

\
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Definition (Subgradient)
Given a convex function © : H — R, the subgradient, ©’(f), is an element of H such
that

(9—1,0'(f)) +6(f) <O(g), VgeH.
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Definition (Level set)
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Definition (Subgradient)
Given a convex function © : H — R, the subgradient, ©’(f), is an element of H such
that

(9—1,0'(f)) +6(f) <O(g), VgeH.

In other words, the hyperplane {(g, (g — f,©'(f)) + ©(f)) : g € H}, supports the
graph of © at the point (f,O(f)).

Definition (Level set)

lev<o(©) =={f € H:O(f) <0}.
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Definition (Subgradient)
Given a convex function © : H — R, the subgradient, ©’(f), is an element of H such
that

(9—1,0'(f)) +6(f) <O(g), VgeH.

In other words, the hyperplane {(g, (g — f,©'(f)) + ©(f)) : g € H}, supports the
graph of © at the point (f,O(f)).

Definition (Level set)

lev<o(©) =={f € H:O(f) <0}.

AR V4

'ﬁy\ Supporting i*Q/
hyperplane

Sergios Theodoridis A Framework for Online Learning Vienna 88/97



_

Definition (Subgradient projection mapping)

Let a convex function © : H — R, with lev<((©) # 0. Then, the
subgradient projection mapping Tg : H — H is defined as follows:

[~ @ (£), i f ¢ leveo(®),

Te(f) = {f, if f € leveo(©).

The mapping Tp is a quasi-nonexpansive one.

L
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Definition (Subgradient projection mapping)

Let a convex function © : H — R, with lev<((©) # 0. Then, the
subgradient projection mapping Tg : H — H is defined as follows:

__ey) / ]
o) = £~ Tere W) 15 ¢ levao(®),
i f £ € leveo(©).
The mapping 7o is a quasi-nonexpansive one.

lev<)© {
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subgradient projection mapping Tg : H — H is defined as follows:

__ey) / ]
o) = £~ Tere W) 15 ¢ levao(®),
i f £ € leveo(©).
The mapping 7o is a quasi-nonexpansive one.

lev<)© {

A Framework for Online Learning Vienna 89/97

Sergios Theodoridis



et
A

Definition (Subgradient projection mapping)

Let a convex function © : H — R, with lev<((©) # 0. Then, the
subgradient projection mapping Tg : H — H is defined as follows:

[~ @ (£), i f ¢ leveo(®),

Te(f) = {f, if f € leveo(©).

The mapping Tp is a quasi-nonexpansive one.

leveg© [[6 /
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Definition (Subgradient projection mapping)

Let a convex function © : H — R, with lev<((©) # 0. Then, the
subgradient projection mapping Tg : H — H is defined as follows:

[~ @ (£), i f ¢ leveo(®),

Te(f) = {f, if f € leveo(©).

The mapping Tp is a quasi-nonexpansive one.

Hyperplane generated
by the subgradient
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Definition (Subgradient projection mapping)

Let a convex function © : H — R, with lev<((©) # 0. Then, the
subgradient projection mapping Tg : H — H is defined as follows:

[~ @ (£), i f ¢ leveo(®),

Te(f) = {f, if f € leveo(©).

The mapping Tp is a quasi-nonexpansive one.
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Definition (Subgradient projection mapping)

Let a convex function © : H — R, with lev<((©) # 0. Then, the
subgradient projection mapping Tg : H — H is defined as follows:

[~ @ (£), i f ¢ leveo(®),

Te(f) = {f, if f € leveo(©).

The mapping Tp is a quasi-nonexpansive one.

Hyperplane generated
by the subgradient
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@ For some user-defined

» a€(0,1), € (0,2),
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@ For some user-defined

» ae(0,1), A€ (0,2),

@ and any initial point fo € H,
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@ For some user-defined
» a€(0,1), A€ (0,2),
@ and any initial point fo € H,
APSM
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@ For some user-defined
» a€(0,1), A€ (0,2),
@ and any initial point fo € H,
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@ For some user-defined
» ac(0,1), A€ (0,2),
@ and any initial point fo € H,
APSM

loss function info

(1= X1+ XTe,) (fa)

= relaxed subgradient
projection T,

o = = = 21N Ge
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@ For some user-defined

» ae(0,1), A€ (0,2),

@ and any initial point fo € H,

APSM

a-priori info

loss function info

(aRn + (1 =a)I) ((1=NI+Te,) (fn)
=Ty, averaged

quasi-nonexpansive mapping

= relaxed subgradient
projection T,
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@ For some user-defined

» ae(0,1), A€ (0,2),

@ and any initial point fo € H,

APSM

a-priori info

quasi-nonexpansive mapping

loss function info
frs1= (aRn+ (1 —a)I) ((1—NI+ATe,) (fa),
=T,,: averaged

= relaxed subgradient
projection T,

Vn,

o = = = ©DHACe
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@ For some user-defined
» a€(0,1), A € (0,2),
@ and any initial point fo € H,

APSM
a-priori info loss function info
frs1= (aRn+ (1 —a)I) (1=NI+XTe,) (fr), Vn,
=Ty, averaged = relaxed subgradient
quasi-nonexpansive mapping projection T,

where

@ (Rn)n=o0,1,... Is a sequence of quasi-nonexpansive mappings. This sequence of
mappings comprises the a-priori information.
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@ For some user-defined
» ac(0,1), A€ (0,2),
@ and any initial point fo € H,

APSM
a-priori info loss function info
frs1= (aRn+ (1 —a)I) (1=NI+XTe,) (fr), Vn,
=Ty, averaged = relaxed subgradient
quasi-nonexpansive mapping projection T,

where

@ (Rn)n=o0,1,... Is a sequence of quasi-nonexpansive mappings. This sequence of
mappings comprises the a-priori information.

@ (Oy)n=0,1,... is a sequence of loss/penalty function which quantifies the deviation
of the sequential training data from the underlying model.
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Given the current estimate f,,, define Vf € H,
S

M d(fn,Sie])
i=n—q+1
O, (f) =

W
J =n—q+1%j

d(fna

(. SildD),
lf féNie, g+15ile]

otherwise

o = = = = ©DHACe
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Given the current estimate f,,, define Vf € H,
S

" d(f,8[e
i=n—qg+1 ( (")d([f]) (f Si [e])
On(f) = e S
A it f &Nz, g1 Sile]
0, otherwise
Then, the APSM becomes: Vn

o = = = 21N Ge
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Given the current estimate f,,, define Vf € H,

W™ d(fn,Sile
D g1 > Un,Bile])
@n(f) =

W
j=n—g+1%j

s Sile),
|f fFé¢nNiz, q+1 Sile]
0, otherwise
Then, the APSM becomes: Vn

(fn + Hn ( Z wi(n)P,S’i[e](fn) - fn)) )
i=n—q+1

o = = = 21N Ge
Sergios Theodoridis A Framework for Online Learning



Given the current estimate f,,, define Vf € H,

W™ d(fn,[e
gt T s A SileD),

j=n—q+1%; d(fn,

On(f) = 'f f & Mg Silel,

0, otherwise.

Then, the APSM becomes: Vn,

(aRn+(1_a)I)J In+ tin Z Wi(n)PSi[e](fn)_fn )

i=n—q+1

T,: averaged
quasi-nonexpansive mapping
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Given the current estimate f,,, define Vf € H,

W™ d(fn,[e
gt T s A SileD),

j=n—q+1%; d(fnS;

On(f) = 'f f & Mg Silel,

0, otherwise.

Then, the APSM becomes: Vn,

Jnt1 = (O‘Rn‘i‘(l_a)ll Jn + bn Z Wi(n)PSi[e](fn)_fn )
i=n—q+1

T,: averaged
quasi-nonexpansive mapping
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 Candidates for the Loss FunCH oS

Given the current estimate f,,, define Vf € H,

W™ d(fn,Sile])
@ _ Z’L =n— q+1 Zn . q+1w(n d(fn, (f S [6])
n(f) T |f f ¢ ni:n—q—i—l Si[E],
0, otherwise.

Then, the APSM becomes: Vn,

fasi= @R+ (1 —a)) | fatmn| D " Psiq(fa)—1fal ]
i=n—q+1

T,: averaged
quasi-nonexpansive mapping

where the extrapolation coefficient u,, € (0,2M,,) with

;Ln q+1 ] ”PS ( ) fn||2 f n (n)P
M, = IS e )Ps NTSEATA Lij=n—qr1%; Psja(fn) 7 fu

1, otherwise.
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Example (Examples of averaged quasi-nonexpansive mappings)
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@ The projection Pc onto a closed convex set C' of H.
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Example (Examples of averaged quasi-nonexpansive mappings)

@ The projection Pc onto a closed convex set C' of H.
The projection Py onto an affine set V of R™, (beamforming).
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Example (Examples of averaged quasi-nonexpansive mappings)

@ The projection Pc onto a closed convex set C' of H.

The projection Py onto an affine set V of R™, (beamforming).
The projection Pg, 15 onto the ¢, ball, (sparsity-aware learning).
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Example (Examples of averaged quasi-nonexpansive mappings)

@ The projection Pc onto a closed convex set C' of H.
The projection Py onto an affine set V of R™, (beamforming).
The projection Pg, 15 onto the ¢, ball, (sparsity-aware learning).
The projections (PB[1 [wn,s])n=0,1,... ONtO a sequence of weighted ¢;
balls, (sparsity-aware learning).
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@ The projection Pc onto a closed convex set C' of H.
The projection Py onto an affine set V of R™, (beamforming).
The projection Pg, 15 onto the ¢, ball, (sparsity-aware learning).
The projections (PB[1 [wn,s])n=0,1,... ONtO a sequence of weighted ¢;
balls, (sparsity-aware learning).
@ The composition of projections Pc, --- Pc,, where Cy,...C), are
closed convex sets with (!_, C; # 0.
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Example (Examples of averaged quasi-nonexpansive mappings)

@ The projection Pc onto a closed convex set C' of H.
The projection Py onto an affine set V of R™, (beamforming).
The projection Pg, 15 onto the ¢, ball, (sparsity-aware learning).
The projections (PB[1 [wn,s])n=0,1,... ONtO a sequence of weighted ¢;
balls, (sparsity-aware learning).

@ The composition of projections Pc, --- Pc,, where Cy,...C), are

closed convex sets with (!_, C; # 0.

The composition of projections P Pk, where II is a hyperplane and
K is an icecream cone, (beamforming).
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Candidates for the Averaged) QUaS

Example (Examples of averaged quasi-nonexpansive mappings)

@ The projection Pc onto a closed convex set C' of H.
The projection Py onto an affine set V of R™, (beamforming).
The projection Pg, 15 onto the ¢, ball, (sparsity-aware learning).
The projections (Ple [wn,s])n=0,1,... ONtO a sequence of weighted ¢;
balls, (sparsity-aware learning).
@ The composition of projections Pc, --- Pc,, where Cy,...C), are
closed convex sets with (!_, C; # 0.

The composition of projections P Pk, where II is a hyperplane and
K is an icecream cone, (beamforming).

@ The composition Py (I -1 - Zﬁ.’:—f ﬂiPci)>, A € (0,2), where
K (NEZ! Ci) = 0, (beamforming).
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@ Surprisingly, the APSM retains its performance and theoretical

properties in the case where the Generalized Thresholding
mapping Tt is used in the place of T,,!

o = = 21N Ge
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@ Surprisingly, the APSM retains its performance and theoretical
properties in the case where the Generalized Thresholding
mapping Tt is used in the place of T,,!

@ Recall that Fix(T7) is a union of subspaces, which is a
non-convex set.
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~ The Trip Still Goes on &g eSO

@ Surprisingly, the APSM retains its performance and theoretical
properties in the case where the Generalized Thresholding
mapping Tt is used in the place of T,,!

@ Recall that Fix(T7) is a union of subspaces, which is a
non-convex set.

@ Such an application motivates the extension of the concept of a
guasi-nonexpansive mapping to that of a partially
quasi-nonexpansive one©.

OKopsinis etal *11a].
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~ Theoretical Properties

Define atn > 0, 2, = Fix(T») Nlev<o Op. Let Q = ﬂnZnO Q. # 0, for some
nonnegative integer no. Assume also that - € [e1,2 — €2, Vn > no, for some
sufficiently small €1, e2 > 0. Under the addition of some mild assumptions, the
following statements hold true®®.

@ Monotone approximation. d( fn+1,2) < d(fn,Q), Vn > no.

@ Asymptotic minimization. lim,— e O (frn) = 0.

@ Cluster points. If we assume that the set of all sequential strong cluster points
&((fn)n=0.1,...) is nonempty, then

S((fn)n=0,1,...) C limsup Fix(T,) Nlimsuplev<o(©n),

n—oo n—oo
where limsup,,_, . An = (,-0 Moy Ure,. (Ax + B[0,7]), and B[0, 7] is a
closed ball of center 0 and radius r.

@ Strong convergence. Assume that there exists a hyperplane II C #H such that
rin () # 0. Then, there exists an f. € H such that lim, e frn = fx.

H[Slavakis, Yamada, '11].
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Matlab code

http://users.uop.gr/

~slavakis/publications.htm

o = = = 21N Ge
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