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Abstract— Magnetic resonance imaging (MRI) may be
used to measure the volumes of muscle and fat from
patients. In this paper we develop a method for
automatic segmentation of adipose and musculasetiss
in human being body. Due to enhanced MR image
resolution , our algorithm proves to be more effidi
than a regular one. Magnetic Resonance Imaging JMRI
image reconstruction based on a frequency domain
Super-Resolution (SR) algorithm, is also preserited
the paper. It is shown that the approach imprové&d M
spatial resolution in cases when Periodically Rumtat
Overlapping  Parallel Lines with  Enhanced
Reconstruction (PROPELLER) sequences are used. The
PROPELLER MRI method collects data in rectangular
‘blades’ rotated around the origin of the k-spdoger-
blade patient motion is the premise for the useRBf
technique. Images obtained from sets of irregularly
located frequency domain samples are combined into
the high resolution MRI image. Our algorithm covars
cardiac and respiratory movements. The improvements
resulted in lower approximation error and higher
convergence speed.

Keywords-MRI, MR image automatic segmentation, fat tom
muscle ratio estimation

l. INTRODUCTION

Magnetic resonance imaging (MRI) is well known as
a non-invasive method routinely used to producén-hig
quality images of the body’s internal tissues. Maion
of a subject during the MRI acquisition generates
artifacts and blurring in the resulting image. The
PROPELLER technique usually reduces motion arsfact
in MRI. Algorithms applied by PROPELLER MRI to
estimate and compensate for rigid-body patient anoti
has been extensively analyzed [19]. MRI techniqag m
be utilized to measure the volumes of fat and neuscl
from these patients in order to evaluate therapies
reduce fat and increase muscular mass [23]. Thie hig
spatial resolution and risk-free feature that cff&tRI
compared to other technologies based on ionizing
radiation are determinant in its daily use. Duette
large amount of data a segmentation method thatsnee
the minor degree of intervention would be useflie T
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usage of unsupervisioned analysis tool MR images
resolution is one of the key feature here. Super-
resolution (SR) is a group of methods aimed atioivig
high resolution images from sets of low-resolutiores.
The motion between low-resolution images is the key
premise here. In case of MRI if the imaging voluise
acquired two or more times with small spatial shift
between acquisitions, a combination of data setsuby
iterative SR algorithm gives improved resolutiondan
better edge definition in the slice-select dirattitan
simple low-resolution images averaging. For thest fir
time some SR techniques have been applied to MRI in
[18]. R. Peeters proposed MRI SR algorithm to reduc
slice thickness in functional MRI [14]. Greenspdrak
[13] proposed MRI reconstruction using SR which
improved spatial resolution in cases when spatially
selective RF pulses are used for localization. His t
paper frequency domain SR image reconstruction
method is used for improving PROPELLER MRI. Low-
resolution images are obtained from frequency-domai
blades by the conjugate gradient method with non-
uniform FFT (NUFFT) at its core [12]. It is shownat,
indeed, the new technique enhances the PROPELLER
MRI images. The majority of previous SR papersehav
considered only global, relative displacements betw
set of low resolution images. In [8] authors praggbs
super-resolution method reconstructing tracked atbje
However, effective tracking is not always possitle.
this paper we are trying to over-come these linoitet

We describe a super-resolution method for images
containing tissues motion. The motion informatien i
evaluated by a nested motion trajectories scherngt F
of all, multiple moving segments are isolated. The
motion trajectory models may be characterized by
parametric model, such as affine transformatioms. |
other words, such extracted image parts are relayed
coherent relative, global, locally constant paraimet
motion vector. Such approach allowed us to thinduab
dynamic scenes as if they were static. Very high
accuracy parametric motion estimation and simutiage
segmentation of the motion field is realized by 3D
orientation tensors with respect to the affine ooti
model. The introductory processing part to be presk
consists of: estimation of 3D orientation tensors,
estimation of motion models parameters, and
simultaneous segmentation of the motion field,



respectively. The algorithm is a generalized versié
that of Irani and Peleg’s one.

. PROPELLERDATA ACQUIZITION

The data acquisition procedure for Diffusion Tensor
Tomography MRI (DTT MR) imaging is based on the
PROPELLER method proposed in Cheryauka (2004).
Here, the resulting k-space trajectories are cdilades,
as frequency-domain image is acquired along cadlest
of straight lines forming rectangular patterns &tsgs”),
see Figure 1. K-space is covered by rotating thémtes
around the centre of the k-space. The key idea of
PROPELLER is that the circular region at the cenfre

the paper we use a min—max criterion to derive the
temporal interpolator [12]. This interpolator prdes
fast, accurate, field-corrected image reconstraoctieen
when the field map is not smooth. There are twoomaj
steps in most methods for field-corrected MR image
reconstruction. Firstly, it is necessary to obtan
estimate of the field map that deals with the spati
distribution of magnetic field inhomogeneities. tims
paper, field-corrected MR image reconstruction ubes
field map to form the reconstructed image of the
transverse magnetization. An accurate, spatially
undistorted field map is assumed to be availableeiV
the field map is obtained, one of methods of field-

the k-space is covered by many blades. Due to data corrected image reconstruction, the conjugate phase

redundancy, effective information correction can be
performed to reduce patient motion artifacts and to
improve the SNR. The PROPELLER technique offers an
opportunity to choose the diffusion gradient dii@tt
while acquiring each k-blade. The conventional
procedure is to acquire a full set of PROPELLERadat
with a fixed direction of the diffusion gradientdano
reconstruct the corresponding component of theotens

5119 k-space samples (5)

Figure 1. PROPELLER blades, dash lines show a single datebla
(see online version for colours).

. MRI IMAGE RECONSTRUCTION

Recently, sampling of MR signals on a rectangular
regularly sampled grid in k-space has been the most
popular acquisition method. This regularity was
motivated by the use of an easy image reconstrnuctio
technique based on the Fast Fourier Transform.
Presently, non-uniform sampling patterns of the#&ee,
such as radial, spiral, or PROPELLER, are gaining
importance in various MRI applications. The image
reconstruction techniques for arbitrary irregularly
sampled grids may be divided into two groups. Tt fi
one, called regridding, consists of computationally
inexpensive resampling and interpolation of a kerne
function into a regularly sampled grid. The nexbugy
employs numerical optimization methods that minamiz
a least-squares cost function. Optimization procesiu
may consider nonuniform coil sensitivity and off-
resonance effects, improve noise suppression,
provide a robust solution within a larger parangetri
domain [14]. These methods have proved their
effectiveness in many clinical applications and ging
methods, while non-uniform acquisition schemes show
their capability to suppress noise and to redutitaets
caused by motion and by eddy currents in functional
[15], cardiac [19], arterial [17], and spine [21haging
as well as others. In the iterative method of
reconstructing field-corrected MR images presented

and

method [12] tries to compensate for the phase atcru
due to the off-resonance at each time point. Sugtaa.

[12] focused on field inhomogeneities, one can also
apply iterative image reconstruction methods to
compensate for other physical phenomena such as
deviations in k-space trajectory and relaxatiorect.
The degradation model applied in the paper does not
require any assumption about its nature, and iefte
applicable to intersecting k-space trajectorieshsas
PROPELLER’s blades. The major disadvantage of
iterative reconstruction methods has been their
computational complexity. Fessler and Sutton [12]
developed accurate and fast non-uniform fast Fourie
transform (NUFFT), then, the method has been agpplie
to MRI data with spiral k-space trajectories. Naméte

MR image reconstruction problem is closely related
the problem of reconstructing a band-limited signan
nonuniform set of samples in the frequency domain
space. Strohmer suggested the use of complex
exponentials for finite-dimensional approximatioims
such problems, and proposed to use an iterative CG
reconstruction method with the NUFFT approach st it
core [22]. In the algorithm presented below NUFFT-
“reverse gridding” and conjugate gradient iterative
scheme were combined. It should be noted, thatiatdn
NUFFT method by itself does not allow for the
compensation of field inhomogeneity effects becahee
integral signal equation for MR is not a Fourier
transform when field inhomogeneities are included.
Fessler and Sutton [12] inspired by the time-sedeten
conjugate-phase reconstruction approach propos$ast a
time-segmented forward projector, and its adjoingt
accounts for field effects and uses the NUFFT. We
applied this concept in the PROPELLER blade images
reconstruction scheme.

IV.  PARTIAL MRI IMAGE RECONSTRUCTION

FROM A SINGLE BLADE

In MR, ignoring relaxation effects, the z-th blade
signal equation is given by Sutton et al. [12]:

SZ (t) ZI .I:(r)C(r)e—ia)(r)(t+TE)e—i27T(k(t)m)dr (1)
where Sz(t) is the complex basehand signal at tilie
“-7 the Z-th blade readoutTE is the echo time,
f(r) is a continuous function of the object’s
transverse magnetization at locatic immediately
following the spin preparation step, c(n)is the

sensitivity map of the receiver coillw(f)is the field



inhomogeneity present ., and k(t) is the k—space
trajectory. For simplicity we let

t(r)=f(r)e(r)e e @

After discretization Z -th blade signal equation is as

follows:
N-1
5,0 = O(K()Y. e re 0

n=0

®)

wherecb(k(t)) denotes Fourier transform &(I) | the
voxel indicator function [12]. In PROPELLER MRI
blade measurements are noisy samples of the gignal
y,=s(t)+¢&.1=1...,.M (4)
where€; denotes noise. Assuming that the dominant
noise is the white Gaussian, we estim:Y; by

minimizing the following penalized least-squaresstco
function

@(£)=2ly= A" + AR(1), sothar
f = argming(f).

Computation o Af corresponds to evaluation of (3).

The R(f) is a regularization function, that penalizes
the roughness of the estimated image. This regalion
can decrease the condition number of the image

reconstruction problem and, therefore, speed up the

convergence. Minimization of cost function is read
iteratively by the conjugate gradient algorithm ][12

As PROPELLER trajectories irk-space are not

Cartesian grids, multiplication by the mati A is the
most computationally demanding operation of the
conjugate gradient algorithm. Nevertheless, a NUFFT
can be used for this purpose to rapidly and acelyrat
evaluate the discrete signal (3). However, the NUFF
method is not directly applicable when the field
inhomogeneity is included because (1) is then not a
Fourier transform integral.

V. MR BLADE BASED SEQUNCEPARTITIONING

Being accurate and powerful, the iterative
backprojection SR algorithm [1] have some drawbacks
e.g. only globally static scenes may be procesEeen,
if we want to apply the IBP scheme directly, images
video frames should be segmented into areas with
uniform motion. We have devised such segmentation
scheme for coherent tissues motion areas [4], sped-

2.

Smultaneous segmentation and velocity estimation

For best results, estimation of affine motion field
should be done over a region with coherent motion.
[4] authors proposed a different approach, weighted
neighbourhoods around each pixel have been intexgbre

as regions. In this section an efficient algoritlion
simultaneous segmentation and velocity estimation,
given an orientation tensor field for only one fignis
presented. The task for the segmentation is tatipart
the image into a set of disjoint regions, so thathe
region is characterized by a uniform motion desatib
by affine model. In this section a region R is defi to

be a nonempty, connected set of pixels. The
segmentation algorithm has been based on a competit
region growing approach [11].
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Figure 2. The proposed SR MRI image reconstruction scheme.

A cost functionCR (X)is associated with each region
defined for all pixels in the image. Regions arevgng
by adding one pixel at a time. To preserve conwiggti
the new pixel must be closest to the region, and to
preserve disjointedness it must not be alreadygasdi
to some other region. The new pixel should be as
“inexpensive” as it is possible. The details are as
follows. Let the borde AR of regionR be the set of
unassigned pixels in the image which are adjacent t
some pixel inR. For each regionR, the possible
candidate N(R), to be added to the region is the least
expensive pixel bordering ® i.e.
N(R) = argmin CR(X) )

The corresponding minimum cost for adding the

candidate to the region is denchin (R) In the
case of an empty border, N(R) is undefined and

Cmin (R) is infinite. Assuming that a number of
regions{Rn} have been obtained in some way, the
rest of the image is partitioned as follows.
1. Find the regiot R for which the cost to add a new
pixel is the least, i.e. 1 =argmin, C . (R)).

2. Add the least expensive pi: N(R ) toR.

3. Repeat first 2 steps until no unassigned Ipixe
remain.
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Figure 3. lllustration of the competitive algorithm [4]



Regrowing is performed for one candidate regioma at
time, which means that there is no competition ketw
regions but rather between pixels. At the beginrihg
candidate region contains only one point, its stgrt
point, which is also the centre point of the iditia
rectangle surrounding it. The cost function used is

(\7T\7)/trT where v is the velocity of the candidate
region's current motion model. The competitive

algorithm is then running until the candidate regias
grown to a specified size. This size is called the

candidate region siziMy and is a design parameter of

the segmentation algorithm. The result of the regig
scheme is that the candidate region consists of

My connected pixels, that are most consistent with the
candidate region's motion model. When the candidate

each subimage. As a final point the results of the
different segmentations have to be joined in arrae
segmentation. Bones tissues also present in MRissca
have usually lighter intensity levels than musdsue,
and comparable to that of fat. Thus, an appropriate
procedure should be included to isolate the imagen
corresponding to the bone. The overall scheme is
implemented in four stages, explained thereafter:

a) Image division and segmentation of subimages, b)
Creation of templates c) Bone extraction, d) Final
segmentation. This algorithm has been successfully
applied [23] giving average results were above 96f%
success in most of the regular resolution images.

VIIl.  EXPERIMENT

In this experiment twenty MRl GE 1.5 T scanner’s
blade based partial frequency images have beem.take

region has been regrown, new optimal parameters are coherent tissues motion has been included. At the

computed. Each candidate region is regrown twidg, [1
a number which seems to be sufficient to obtain
reasonably coherent regions.

VI. MODIFIEDIBP SR

Starting with an initial gues: fo [1] for the high

resolution image, the imaging process is simulated

. . . 0
obtain a set of low resolution |mage{g|(<)}

corresponding to the observed input ima{gk} If fo
were the correct high resolution image (1), thea th

simulated images{gk} should be identical to the

observed images. The difference ima (gk - gf) are
used to improve the initial guess by "back projegti
each value in difference images onto its corespandi
field in fo, yielding an improved high resolution image

fl. This process is repeated iteratively to minintlze
remaining error. This iterative update scheme can b
expressed by:

n+; n 1 S = n *
=0+ > T(9-9) 197 p)
k=1

where K is the number of low resolution images

T arrow an upsampling operator by a factor s anda is
back projection kernel determined hyand Tk. Taking
the average of all discrepancies has the effectdfcing
noise.

VII. SEGMENTATION[23]

Adipose tissue typically presents higher intensityel
than muscle tissue in thigh MRIs, while backgrousmd
supposed to be darker. Therefore, intensity thidgim

seems the most reasonable approach to perform this

segmentation. However, the intensity source in
resonance images is not homogenic and its pixels
corresponding to the same tissue suffer significant
variations of intensity. The main technique emptbire
utilized approach is adapted thresholding [23], iehe
the image is splited into a group of smaller sulgjem
and then the thresholding is applied independetatly

beginning the motion parameters in the frequency
domain space have been calculated. The next step
involved MRI image reconstruction procedure from

single blades.

Twenty shifted images were acquired in order to
reconstruct an SR image with doubled resolutions It
clearly visible that there are many more detailghie
high-resolution image obtained in this way, seaifggt.

These SR resolution images have been segmented.
The segmentation algorithm is fully automatic ire th
sense that specialist intervention is not requifage to
improved input resolution higher accuracy of the
segmentation has been achieved.

Figure 4. From left to right: (upper row) patient sufferingin
obesity image obtained by “typical” PROPELLER-MRbpedure,
the super reconstructed MRI-PROPELLER image, (lawes)
regular resolution segmented image (small adipssed areas not
detected), SR segmented image (improved segmaenjtatio

IX. CONCLUSION

The new PROPELLER MRI super resolution algorithm,
based on tissues movements analysis, has been
presented. In general, when applying SR to MRI ae c
break down limits on inherent resolution of exigtMR
imaging hardware. The same can be told about the
proposed algorithm, which in addition does not add
significant time to data reconstruction, if comghte

the typical PROPELLER procedure. When using the
new algorithm the overall spatial accuracy andiktab

in the field of view of MRI machines are increaséd.
has been proved that higher image definition makes
segmentation part easier and more accurate. Thas, t
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proposed technique may find applications in all
PROPELLER MRI machines. Moreover, the proposed
scheme takes into account tissues movements. e ne

i X (12
SR technique and more robust segmentation may find [
applications in unsupervised measurement systems of

fat and muscle tissues.
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