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Traffic Monitoring for 3G Network
Diagnostic: a Doctor’'s View

Dr. Fabio Ricciato
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This talk

Goal
share lessons learned about the role of
traffic measurements data signals

for the diagnosis
of network problems
in @ 3G mobile network system

Outline

- Background

- Introduction to 3G cellular networks

- Traffic monitoring and Network Signals for Diagnostics
- Example: detection of congestion bottleneck



Research on 3G traffic monitoring @FTW ~—~ )

= Research on 3G Traffic Monitoring @FTW began in 2004

= METAWIN project
- Measurement and Traffic Analysis in Wireless Network
- partners: network operator, system integrator, university
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= @Goals
- Sniff packets in the 3G core Network (GPRS and UMTS)
- Analyze traffic traces to support network planning
- Understand “what’s going on”



Results from 1st project

Prototype of advanced monitoring system
Developed from scratch on Linux

Deployed in the live network of Al for dual use (production +
research)

Access to real retwork and monitoring data for research

Follow-up projects
research: analysis of traffic data
commercial: development/extension of monitoring system

Research projects series: DARWIN, DARWIN+...

METAWIN

Commercial Development for KCC/A1 >
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Introduction to 3G mobile networks



Circuits and Packets Y

= Two main design approaches for Communication Networks

= Circuit-switched (CS)
- nodes build a long pipe (= “circuit”) from source to destination
- data (e.g. voice samples) travel into the pipe

= Packet-switched (PS)
- data travel in independent chunks 2> “packets”

- packets received, processed and forwarded independently
by intermediate nodes




Architecture of 2G mobile network (GSM)/%
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Evolution of cellular networks >
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It keeps changing ...

= Cellular Network is continuously evolving system...
architecture evolves: GSM, GPRS, EDGE, UMTS, HSPA, LTE/SAE
upgrade/replacement of network equipments

new SW releases, new network features

capacity upgrades: more radio bandwidth, higher link speed

= ... embedded in a continuosly evolving usaeg environment
- more 3G users, increasing bandwidth demads, changing traffic patterns
- more terminals, of new classes (laptop, smartphone, tablets... Internet
of Things...) and capabilities
- evolution of applications, apps, services
- new habits: mobile tethering, wifi offloading Q £
AN1INE ]
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Representation of Architecture
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Representation of Protocol Stack
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Representation of Protocol Stack o

lications

3GPP
layers

Data Plane Control plane
GPRS GPRS

~~opennes
heterogenity

functional
complexity

O
= Control Plane needs to Manage:

- Radio Resources RRM
- Mobility MM
- Connections CM

= Diversity of applications, traffic patterns,
open reachability




Analogy with human body %

= The real infrastructure is much more complex
than any of its schematic representation

- Physical and logical components, dependencies, functional layers
... like a human body!




change

evolving

static

we are here

simple
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3G networks are complex and evolving systems
- new risks, problems, anomalies arise continuously ...

Endogenous: congestions, misconfiguration, failures,
malfunctioning

Exogenous: attacks, large-scale infections

To operate correctly the network infrastructure, its health
status must be monitored continuously, to reveal problems/
anomalies as early as possible

- diagnosis & troubleshooting are continuous processes
(not one-shot tasks)

How network monitoring can help the process of diagnosis and
troubleshooting ? What are the difficulties & challenges?

20
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How ?
Observe many “signals” from the infrastructure, obtained with
non-invasive methods

Reveal “symptoms” of abnormal conditions and interpret
possible causes - “diagnosis”

Challenges
define the “right” signals (cost vs. benefit)
detect “abnormal conditions” (symptoms)
interpret the root cause (diagnosis)

Like in Medicine ...
coping with “soft” definitions
some irreducible level of subjectivity

21
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Introduction to Network Monitoring
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Network Monitoring ~ ~N )

How the operator can monitor its network

1. Ask the boxes
- Collects logs and alarms from network equipment themselves
- Limited amount of data, coarse accuracy, sometimes unreliable

23
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Network Monitoring ==

W,

= How the operator can monitor a network

= 1. Ask the boxes
- Collects logs and alarms from network equipment themselves
- Limited amount of data, coarse accuracy, sometimes unreliable

= 2. Active measurements

- Send end-to-end probe traffic
through the network
e.g. test downloads, pings

24



How the operator can monitor a network

1. Ask the boxes

Collects logs and alarms from network equipment themselves
Limited amount of data, coarse accuracy, sometimes unreliable

2. Active measurements

Send end-to-end probe traffic

through the network

e.g. test downloads, pings

3. Passive monitoring

“sniff” packets on the wire

Non invasive, but requires
monitoring HW installation

25
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Hybrid Measurements

send probe traffic and

capture it passively
inside the network



Passive monitoring

Sniffing
- pick a copy of the packet as it traverses the wire

- Store it with additional information to each record
- e.g. timestamps, capture interface, terminal type

Packets

| -, () & | |
NodeAI INodeB

Prod_uction i Splitter
link :

Monitoring
. probe |



Example of passive monitor deployment %\
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Examples of “network signals” related to performance metrics

one-point measurements on data plane
TCP Round-Trip-Time (RTT), Retransmissions, Timeouts
Throughput statistics (peak, mean,...), Download times
higher-layer Request/Response delay (DNS, HTTP, ...)

two-point measurements on data plane
One-way delay
Packet loss

control-plane signals

Frequency of error messages, latency of signaling procedures

Signals can be partitioned across several dimensions
Network section
e.g. traffic to server Y, to peering link X, to node Z ...
User class, Terminal type
Application, Service ... etc.
28
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Basic principle: network problems will impact one or several
“signals”, causing abnormal patterns

congestion - higher loss and/or delay, lower flow throughput
observe the signal to infer back the problem

inf | et Develop detectors
niorma Define and extract exploration of P
network === network “signals” signal patterns o EMSITEALE
model 9 ghatp patterns

A

: M
refgne refine the w discover/
‘ A definition understand <:I alarms, anomalies
model

of signal new phenomena
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our mental model ... 4’

eventA ——— pattern on signal X

eg. “congested link’ eg. “more flows getting low throughpu:t”

To reveal this We measure this

________________________________________________________________________________

event A —> pattern on signal X i
congested link

cause B

large-scale antivirus update pattern on signal Y
cause C
\low-rate app getting popular ;




a matter of definitions AN )

= Q. How many sheeps in this field ?

= counting is easy ...

= once you define clearly what to count
- how is the “field” delimited ?

- and what do you mean exactly by “sheep”?
- are lambs counted as sheep, or only adults ?
- do pregnant sheeps count for 1 or 2 ?
- what about those dead sheeps over there ?
- shouldn’t we count goats too ?

WHY do you want to count ? <= \VHAT to count ?

31



Examples of Passive Monitoring for
Network Diagnostic

Longum est iter per praecepta, breve et efficax per exempla
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Detecting congestion bottleneck N D)

= Congestion bottleneck
- Definition: too much traffic for too little capacity at some point

- Effects on packets
- Packets queued in buffers: longer transit delay

- Packet drops: retransmissions
ﬂ% End-terminals react reducing the sending rate
- Impact on users

- Loooooong waiting for downloads
- Interactive applications don’t work: voip, skype, game...




Detecting congestion bottleneck \ Qj\

Causes for congestion bottleneck J

- Traffic grew faster than provisioning cycle

- gap between nominal vs. actual capacity (e.g. due to misconfigurations, misfunctioning, ...)
Problem: not every link/node can be monitored

Goal: detect congestion on link/node X from the analysis of traffic at a
different point M

- without a priori information about actual link capacity
- without topology information

Internet

’
‘y
&

SA -
Sub-Aggregates ” °

Bottleneck  Monitoring
Link Point
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r 4
Idea: look at TCP

TCP is closed-loop - protocol dynamics have end-to-end
interactions - local problem on link X should be visible at any
other path section

>909% of traffic is TCP

Possible approaches: analysis of ...
Distribution of Traffic Rate
Frequency of Retransmission Timeouts (RTOs)
Round-Trip Times (RTT)
Per-flow Throughput

35



Detecting congestion bottleneck

= Detecting congestion from aggregate rate analysis
- a real case study

measured rate (bins of =10 sec)
moving average (w=1h)
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Fig. 3. SA total rate for days 17-20 (10 s bins). day

Fig. 2. SA total rate for the monitored period (10 s bins, rescaled values).

F. Ricciato, F. Vacirca, P. Svoboda, Diagnosis of Capacity Bottlenecks via Passive Monitoring
in 3G Networks: an Empirical Analysis, Computer Networks, vol. 51, n.4, pp. 1205-1231, March 2007



Background

The simplest traffic model for infinite capacity:

superposition of independent On/Off flows
Poisson arrivals of rate A, holding time of mean 9 pr(k) =

fixed rate r=1 (M/G/ > queue)

Aggregate rate (marginal) is Poisson distributed

Variance = Mean
Skewness = Mean-1/2

Bottleneck-free conditions

Variance of marginal rate
increases with mean load

Variance is higher at peak-hour

Skewness is lower at peak-hour

37
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marginal distribution of
instantaneous traffic rate




Aggregate Rate Analysis - the idea

= Conjecture on bottleneck-constrained traffic
- Instantaneous rate R can not exceed path capacity C

- Bottleneck induces correlation between flow rates as R=>C-
- via congestion control loop
- reflecting barrier at R=C

- Variance reduction and left-skewness as R>C-

Idea: use trajectories of VAR-MEAN and SKEW-MEAN
to infer the presence of a bottleneck (and value of C)
without a priori information on C !




| ~—
Time-scales N )

\

e

= Importance of time-scales /
- aggregate rate R(t) is measured in time-bins of length T
- moments (MEAN, VAR, SKEW) are estimated in window of length W
- time-scales constraints

- T >= a few RTTs (to close the CC loop)

- W >> T (to have enough samples)
but small enough to ensure stationarity (time-of-day fluctuations)

- our setting: T=10 sec, W=1 hour.

Skewness-mean trajectory (before bottleneck removal)
T T T

variance

mean

A4 day 21 B R S
+ day22 ,\’
1 1 1

- day23




Data reduction

Data reduction
- Our goal is only to discriminate increase/decrease trends
- apply quadratic regression on V/M, S/M data

- benefits: reduces noise, impact of outliers > robustness

variance

skewness

- don’t use more data than you actually need!

- fitted polynomial parameters give synthetic indicators that can

be thresholded to trigger alarm

x 1072 (a) variance-mean trajectory
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Validation by simulation f\. =

A

= Simulation set-up (ns-2)
- simple closed-loop user model

- allows testing different congestion levels, bottleneck types
(buffering vs. discarding excess packets) than real bottleneck

Start download End download Start download
file of size s, file of size 5,44
[ 1 —
" G < > by time
think-time d,
Fitted Mean-Variancs trajectory
Sinulation Settings: be100Mb, 5, Exp{100kB], &, «Exp{75sec], 150 users Simulation Settings: be1.2M, 5, Exp{ 1008), d,« Exp{75m0c], s150 users
o T 1080¢ mov-avy =100 Mbps.
1h mov-avg ———
1 1500 |
i i
£ 2
i i s -
@ @<
£ £ 2
€ €
2 2
o Q 1 y
7/./ n
’:/ o © b=12
200 400 600 800 1000 200 1400 600




Retransmission TimeOuts )

= Bottleneck - Congestion at peak hour > more packet loss
- more retransmissions due to timeout expirations

= Idea: infer congestion from Frequency of Retransmission Timeouts
(RTO)s in some timebin T

#of RTO eventsin T
#of DATA packets in T

FRTO (T) =

= Expectation: bottleneck causes large increase of Fy5 in peak-hour
compared to off-peak periods

09 m.easured rate (bins of t=10sec)
moving average (w=1h)

= Tool to infer TCP RTOs -
from DATA-ACK (mis)matching
- classifies different types of RTOs (spurious, ...) 3

- measure frequency of RTOs in timebins of 1 min

0.2

01

0

6 7 8 91011121314 1516 17 18 19 20 122232425262}’28
day

Fig. 2. SA total rate for the monitored period (10 s bins, rescaled values).
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Raw RTO measurements

= On the right way, but “noise” would cause false alarms ...

O 0.03
-
5002

01 02,03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21J22 23 24 25 26 27 28 29 30 31
x10
e ol .!....!...!....!...!..l'...!...!...!...l..._

SRTO
o N B o @

12 13 14 15 16 17 18 19 20 21

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31

“4+O

measured rate (bins of t=1055c)
moving average (w=1h)

o
@

o
©w

traffic rate (re-scaled)
o o o
[

o
-

’ i ]
6 7 8 910111213 141516 17 1819 20 1 2223 24 2526 27 28
day

Fig. 2. SA total rate for the monitored period (10 s bins, rescaled values).



Filtered RTO measurements

= Noise due to heavy-hitters “bad elephants” (BE)

- few clients, with high traffic volume (elephant) and poor network
conditions ("bad”) due to local causes

o ) #of RTO events
- biasing the ratio #0f DATA packets
= Workaround

in some timebins

- identify BE by some heuristic (e.g. the top-10 with most RTOs) and filter
them away
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The problem of “bad elephants” is more general, and is
encountered often in the field of networking
traffic distributions are heavy-tailed
- there are always some “elephants” around
poor performance sometimes due to local conditions
e.g. congestion of dedicated resources, terminal errors ...
- some elephants will be * bad”
many common KPI are just global percentages!

KPJ = #of failed attempts

#of attempts

Can we provide a theoretically-founded solution (in place of
heuristics) ?

A. Coluccia, F. Ricciato, P. Romirer, On Robust Estimation of Network-wide Packet Loss in 3G Cellular Networks,
Proc. of 5th IEEE Broadband Wireless Access Workshop (BWA'09).
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System Modeling A~

REQUEST SUCCESS

packet, SYN, attach_request, ... x FAILURE

lost, late, failed, unanswered ...




Notation e
share
in a generic timebin t user i (i=1.../) dedicated resources
generates n, “requests” (e.g. packets) reROHIEes
out of which m, “fail” (e.g. lost) @ l
Assumptions @

failures are independent and occur with
(unknown) probability a;

, . . . _ def r
a’s are iid random variables with mean a = Ela;]

independency between traffic volume n;
and failure prob. a;

Goal: estimate @ = E[a;]. given a set of measurements {n,m}
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Estimators

= Goal: estimate a = E[q;] given {n,m}
= The ldeal Estimator

- is unbiased W,

- has minimum variance =

- is simple: fast to compute, easy to implement, easy to understand by
practitioners!

- is general: not bound to a specific (class of) traffic distribution (n/'s)
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Basic Estimators % - )

— R — % — —>

. : — % l >

= Empirical Global Ratio S

- Global Percentage >

%X >

_ # of total failures Eimi KAXCAAAXAKCAXAXXR A

EGR= =
# of total requests E n,

i

= Empirical Mean Ratio
- Arithmetic mean of individual ratios 7, = M

n.
1 I m,
EMR=~ ), 1~ ;Ei;

- NB: EMR is more costly to implement than EGR, requires per-user
counters =2 need to extract event-to-user associations

NB: r,=m,/n, is the minimum variance unbiased estjgator (MVUE) for g,

49
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EWR - definition =Y

= Both EGR and EMR can be “corrected”
by filtering away very big (for EGR) or very small (for EMR) samples

- discarding lots of data, especially for long-tailed n/’s

= Can we do something more clever than discarding data ?
- weighting data !

= Empirical Weighted Ratio (EWR)

m;
EWR= Eiwin_i = E,-Wiri

T
wr

with w. >0, E_Wi =1

= EGR,EMR are special cases of EWR
- w; constant > w=1/| 2> EWR=EMR
- w; proportional to n; 2 w=n/N - EWR=EGR

50
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g
= Problem: Find the optimal weights w;'s that minimize the variance
of the estimator VAR(S(w))

S(w)=w'r with |w=1Lw=0
= Resolution

- compute variance of estimator as function of weights VAR(S(w))=f(w)
- constrained minimization, solve by Lagrangian multipliers

. . w = arg min VAR[S(w)]
= Exact optimal solution W>0
2. iwi=1

nj : . def 1
; with n; =

Wi = ' 2
Z'j=1 nj 03 T

wil
|
= n..Qw
|
wl
o
S—

[BWA'09] A. Coluccia, F. Ricciato, Peter Romirer, On Robust Estimation of Network-wide
Packet Loss in 3G Cellular Networks, IEEE BWA 2009, Honolulu, 30 November 2009
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EWR — weight setting )

piece-wise linear approximation (EPWR)

n; .. def . @,

Wi = —— nj = min(n;, 6) AN
. AY
2 j=11 N
W
——— - W
» def 3—g2—32 ‘
where § = =— 35—

a

veights

n,<0—=w,=n-c

exact optimal solution

nz=0—w,=0-c N . def 1

with n; = —=
I_ h: 2 (3—05-3°)
j=11j O3+

with ¢ a normalization contant

= setting the knee-point ©

- optimal value depends on first two moments of p(a): 2 unknown @
- final estimator performance are weakly sensitive to exact location of knee-
point, as far as “extreme” settings (very low, very high) are avoided

- simplest solution: set to fixed value, e.g. 6=20.

52
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4
Empirical Piece-wise Linearly Weighted Ratio (EPWR) |
single parameter 6 (set heuristically to 6=20) ,
very simple conceptually and computationally Sw)=D) wiri=w'r
requires individual per-user counters, as EMR i=1

W = hi min(n;, 6)

I .
Alternative approach: Bayesian estimators 217
Bayesian hierarchical model: p(a) = {a;} 2> {m}
Approach: empirical parametric Bayes + conjugate prior (*)

elegant maths, closed formula, but in practice same performance as EPWR

A |:| Bayesian

estimator

>

=

X

9o

o

e EPWR EMR

o

o [] []

|:| EGR (*) Fabio Ricciato, Angelo Coluccia, and Peter Romirer, Bayesian Estimation of
> Network-wide Mean Failure Probability in 3G Cellular Networks,
variance Proc. of PERFORM 2010 Workshop, Vienna, 14-16 October 2010, LNCS vol. 6821.
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Results DATA:INV N\ )
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Fig. 2. Estimated mean failure probability for DATA:INV dataset (missing or ambiguous
SYNACK/ACK associations).
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Results DATA:RTT N\ )
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Fig. 3. Estimated mean failure probability for DATA:RTT dataset (unambiguous SYNACK/ACK

pairs with semi-RTT exceeding 500 ms).
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Results from a real dataset

Datasets from on a real UMTS/HSPA
network

DATA:INV

- REQUEST :=every SYNACK in DL
SUCCESS := unambiguous ACK in UL

DATARTT
- REQUEST := unambiguous SYNACK/ACK pair

- SUCCESS :=RTT <500 ms

missing ACK

time

ambiguous

as

sociation

%,

SYN-ACK

retransmitted

Ak ——

SYN-ACK } SYNACK

retransmission
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Detecting congestion bottleneck

Detecting upstream congestion from server-side RTT
- SYN-SYNACK associations

S

MS
client

T ao—

i Y
time

client-side
RTT

server-side
RTT
SYNACK
-

S/

S
5 side Seni-RTT Percentiles - Internal Server: RRT All
J S 2009, aa 83 to J 8 2009, 23: 53 Tin b of 5 Hinutes
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2] 6 12 18 24 30 36 42 48 54 60 66 72
Hours after Jun 6 28089, 80:03
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The proposed approaches (rate/RTO/RTT) helped to detect
instances of serious congestion in the real network

Next goal: detecting pre-congestion events
3G network capacity is becoming the bottleneck

Approach: analyse per-flow throughput

extract relevant “signal” from per-flow throughput
measurements

ongoing work ....
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Working with online data )

= Doctors need to practice on real patients ...

= It's important to analyse recent data - online analysis
- external information needed for drill-down is still available
- you can still talk to the patient
- timely identification of real anomalies has immediate impact
- makes research more interesting, but also more costly
- need cooperation with the patient




Research on 3G Traffic Monitoring ...

IS interesting
as any research on real systems

is useful
3G network systems are too complex/large to be error-free
is costly
data collection eats lot of engineer works
analysis and explorations of real data is often lengthy
every analysis task requires own methodology
need domain-specific knowledge about 3G networks, protocols

lot of space for problem-driven & curiosity-driven research
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Wrap-up on Lessons Learned ==\

= Automatic anomaly-detection like a medical tool

= Yes, it empowers the doctor
= No, it cannot replace the doctor

=  About network problems

- Recurring problems: can be detected and diagnosed
automatically (but also prevented...)

- Novel problems: symptoms can be detected automatically, but
need doctor for interpretation and drill-down

- healthy network = no recurring problems, only new ones
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Follow-up

= Publications:
= http://userver.ftw.at/~ricciato/publications.html

= email:
= ricciato@ftw.at



